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Óscar Amaro

Editor:

Marta Fajardo

November 2022





Contents

Editor foreword ii

Guest Editor foreword ii

Best Image Award iii

About us iv

Analytic Solutions of Geodesics in Rotating Spacetime 1
Diogo Silva

Spectra of interference between harmonic components due to group veloc-
ity mismatch 5
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Editor foreword

Welcome to the latest issue of APPLAUSE Review Letters, where we showcase the
insightful work of our talented PhD students. This edition highlights the diverse research
topics explored by APPLAuSE, including the valuable contributions of a student invited
from the Center of Astrophysics and Gravitation (CENTRA).

I would like to express my gratitude to our students for their exceptional dedication.
Although our cohort comprises only four students, this edition highlights their significant
contributions and collaborative spirit, making this journey truly rewarding. I also extend
my appreciation to our guest editor, Lucas Ansia for his effort in shaping this edition.

Furthermore, I would like to thank the reviewers for their invaluable feedback, which
has contributed to the quality of this publication. We invite you to explore this edition
of APPLAUSE Review Letters.

Marta Fajardo,
Editor, APPLAuSE Review Letters,
Instituto de Plasmas e Fusão Nuclear (IPFN), Instituto Superior Técnico.

Guest Editor foreword

Within the pages of this edition, we present a compilation of the work done by the
APPLAuSE PhD program fellows, together with our invited student from CENTRA.

While our focus in academia often centres on research outcomes, especially at the
beginning of our career, it is important to recognize that science encompasses more than
results. This magazine and our soft skill course serve as a reminder that effectively share
our research is an integral part of the scientific process.

I want to thank all the students that take part in the course as well as our professor,
Marta Fajardo, for all their interest and their uncountable contributions. I would also
like to thank the APPLAuSE PhD program, not only for this workshop but for the
opportunities to pursue my doctoral studies under their support.

I really hope you enjoy reading this magazine as much as we enjoy building it.

Lucas Ansia,
APPLAuSE PhD student,
Instituto de Plasmas e Fusão Nuclear (IPFN), Instituto Superior Técnico.
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APPLAuSE Review Letters

Best Image Award

This year’s best figure winner is Diogo Silva.

Trajectory of a falling timelike particle, in (r, θ, ϕ) coordinates, and beginning fall from
the ISSO with (a, rI) = (0.9, 2.6). After initiating fall, the particle reaches the outer and
interior event horizons, r+ and r−, respectively, before reaching the ring singularity at
the center.
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About us

Diogo Silva was born in Lisbon. He finished his Master’s Degree in
Engineering Physics in 2020 having developed his thesis on the subject
of gravitation with focus on gravitational collapse of dust, at CENTRA.
In 2022 he started his PhD in the same research group, under the super-
vision of professors Jorge Rocha and David Hilditch, and was awarded
an FCT grant. His PhD thesis, also on gravitational collapse in general
relativity, focuses on more complex matter models with the objective to
better improve the current understanding of these phenomena.

Gonçalo Vaz was born in 1998, in Guarda, Portugal. In 2016 initi-
ated an Integrated Master’s in Engineering Physics at IST, later joining
the Group of Lasers and Plasmas in 2020 as an intern. The following
year, he concluded his MSc in this group under the supervision of Drs.
Gonçalo Figueira and Hugo Pires, with a thesis titled: Nonlinear op-
tics with ultrashort mid-infrared laser pulses. Presently he is enrolled in
the APPLAuSE program exploring the capabilities of high-power laser
sources and nonlinear optics in the laboratory.

Lucas Ansia was born in the small town of Ourense, Galicia. As a
Master’s student, he worked at the Fusion Institute of the Polytechnic
University of Madrid, where he obtained his Master’s degree in Nuclear
Science and Technology in 2021. His thesis focused on the development
of multi-material hydrodynamic codes. In 2022 he joined the APPLAuSE
program and started his PhD under the supervision of Prof. Marta Fa-
jardo and Dr. Gareth Williams, on the modelling of laser driven solid-
density plasmas.

Óscar Amaro obtained his MSc Degree in Engineering Physics in 2021,
from IST. He is currently developing his PhD under the supervision of
Prof. Marija Vranic on QED-Plasma Physics and Quantum Algorithms
within the APPLAuSE program. This work addresses issues such as opti-
mal positron production in laser-electron scattering in current and near-
future Petawatt facilities and the possibility of using quantum computers
to solve plasma physics problems. Before enrolling in the APPLAuSE
program, he joined GoLP-EPP as an undergraduate student in 2018.
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Analytic Solutions of Geodesics in Rotating Spacetime*

Diogo Silva1

Abstract— Starting from the Kerr metric in Kerr-Newman
coordinates we develop the analytic solutions for test particles
that fall from the innermost precessing stable circular orbit
(ISSO). We show that application of the Mino time parame-
terization to the equations of motion found by Carter allows
a closed form solution through the use of elliptic functions.
The solution hence obtained depends only on the constants of
the motion, corresponding to the Carter constant, energy and
angular momentum, but also on the roots of the radial and polar
potentials. Having obtained the description of this system, we
obtain a better understanding of particle dynamics in curved
spacetimes, thus serving as an important stepping stone for
other dyamical systems such as compact object binaries.

I. INTRODUCTION
The complete description of geodesics induced by a black

hole is an important part of understanding the causal struc-
ture of spacetime [1]. While the geodesic equations for
the Schwarzschild black hole, the oldest and most studied
vacuum solution, are well known [2], the same is not true for
the geodesics surrounding the Kerr black hole. Discovered
by Kerr [3], it has been studied extensively, with regard to its
properties, by Carter [4] and written in different coordinate
systems, e.g., by Newman et al. [5]. In his works, Carter [4]
obtained the equations of motion for falling test particles.
However, the complexity shown by this spacetime has made
analytic solutions for the corresponding geodesics elusive.
Mino [6], while employing a perturbative method to obtain
the orbits of particles, proposed a parameterization that sim-
plifies the equations of motion, but did not obtain an explicit
closed form solution. This solution was found recently by
Dyson and van de Meent [7] who, following on Mino’s work,
showed that solutions for generalized falling test particles
could be obtained in the form of elliptic functions. A closed
form description of geodesics of falling particles is a matter
of great importance, as it not only gives the causal structure
of the spacetime around the black hole, i.e. how observers
report events around them, but can also be used to describe
phenomena involving rotating black holes.

In this report we start from the work of Carter and develop
the system of equations onward in a unified notation for the
specific case of the innermost precessing stable circular orbits
(ISSO). This is not limiting as the only restriction comes in
the form of the roots of a radial potential. Obtaining the
generalized solution requires only dropping that restriction,
but otherwise the mathematical methods are equivalent.

*This work was supported by FCT though the grant 2022.13617.BD
1D. Silva is with CENTRA- center for astrophysics and gravitation,

Instituto Superior Técnico- Universidade de Lisboa, Avenida Rovisco
Pais 1, 1049-001 Lisbon, Portugal Diogo L. F. G. Silva at
orcid.org Corresponding author: diogo.l.silva@tecnico.ulisboa.pt

Corresponding author: diogo.l.silva@tecnico.ulisboa.pt

The report’s layout is as follows. In Section II we obtain
the differential equations of geodesic motion for the rotating
metric, as obtained by Carter, carefully explaining each step.
In Section III we apply the restriction to the ISSO by
restricting the radial potential and its number of roots. In
Section IV we present the conclusions of this work and
possible venues for future research.

In this report we use natural units, i.e. G = c = 1, and a
negative metric signature, i.e. diag(−1,1,1,1).

II. EQUATIONS OF GEODESIC MOTION

A. For a General Metric

A metric defines the distance relation between adjacent
points in spacetime. As particles follow paths that maximize
the distance, called geodesics, we start by defining a metric
specifying the spacetime. We define the general case

ds2 = gi j dxi dx j, (1)

The metric establishes the canonical momenta

pi = gi j ẋ j, (2)

where an overdot denotes differentiation with respect to the
parameter of the path, i.e., ẋ = dx/dτ , τ being the proper
time. The particles’ Lagrangian can then be defined as

L =
1
2

gi j ẋi ẋ j =−1
2

µ2, (3)

with µ2 a constant of values µ = 0,−1,1 for null, space-
like and timelike geodesics, respectively. Note that µ2 is
normalization factor and its value can, apart from the sign,
be changed through reparameterization. The Hamiltonian is
defined as

H =
1
2

gi j pi p j =−1
2

µ2 (4)

The equations of motion can be obtained through the
Hamilton-Jacobi equation.

S =
1
2

µ2 τ +Su +Sr +Sz +Sφ̄ (5)

where S is the Hamilton Principal Function (HPF) and is
defined through

∂S
∂τ

=−H ,
∂S
∂qi =

∂L
∂ q̇i = pi, (6)

for coordinates qi. On the other hand, derivatives of the HPF
with respect to the constants of motion, α j, are constant

∂S
∂α j

= 0, (7)

thus yielding the equations of motion.
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B. For the Kerr Metric

For a rotating black hole, we consider the Kerr metric in
Kerr-Newman coordinates,

ds2 =−
(

1− 2M r
Σ

)
du2 +2dudr−2

2M r
Σ

a(1− z2)dudφ̄

−2a(1− z2)dr dφ̄ +
Σ

1− z2 dz2

+
1
Σ
(
(r2 +a2)2 −∆a2 (1− z2)

)
(1− z2)dφ̄ 2,

(8)

where

Σ = r2 +a2 z2 , ∆ = r2 −2M r+a2, (9)

and a and M are the spin and mass of the black hole,
respectively. The coordinates (u,z, φ̄) are related to the usual
coordinates (t,θ ,φ) through

du = dt +
2M r+∆

∆
dr , z = cosθ , dφ̄ = dφ +

a
∆

dr. (10)

The Kerr spacetime verifies two horizons, corresponding
to the roots of ∆, respectively r± = M ±

√
M2 −a2, which

exist only for M > a, which we will be considering onward.
The momenta follow from Eq. (2)

pu =−
(

1− 2M r
Σ

)
u̇+ ṙ− 2M r

Σ
a(1− z2) ˙̄φ , (11)

pr = u̇−a(1− z2) ˙̄φ , (12)

pz =
Σ

1− z2 ż, (13)

pφ̄ =−2M r
Σ

a(1− z2) u̇−a(1− z2) ṙ+

+
1
Σ
(
(r2 +a2)2 −∆a2 (1− z2)

)
(1− z2) ˙̄φ .

(14)

The Lagrangian follows directly from the metric, Eq. (8),
and the Hamiltonian follows from the momenta, Eqs. (11)-
(14),

H =
1
2

[
1
Σ

a2 (1− z2) p2
u +2

1
Σ
(r2 +a2) pu pr +2

a
Σ

pu pφ̄+

+
∆
Σ

p2
r +2

a
Σ

pr pφ̄ +
1− z2

Σ
p2

z +
1

Σ(1− z2)
p2

φ̄

]
.

(15)

Returning to the HPF and from Eq. (6), each of its parts
could be obtained as the integral of either the momenta or,
equivalently, the quantity ∂L/∂ q̇i. The latter can be noted to
be one of the terms of the Euler-Lagrange equation. Thus,
noting also that the metric, and thus the Lagrangian, does
not depend explicitly on either coordinates t and φ̄ , we have
two constants of motion in the form of the energy (ε) and
angular momentum (L ) and

pu =−ε , pφ̄ = L , (16)

=⇒ Su =−ε u , Sφ̄ = L φ̄ . (17)

Applying the remaining relations for Sr and Sz in the
Hamiltonian, Eq. (15), we find terms that depend only on

r and on z, i.e., the equation becomes separable. Introducing
the constant K , we then have

(1− z2)

(
∂Sz

∂ z

)2

+µ2 a2 z2 +(1− z2)

[
aε − L

1− z2

]2

= K ,

(18)

∆
(

∂Sr

∂ r

)2

−2
[
(r2 +a2)ε −aL

](∂Sr

∂ r

)
+µ2 r2 =−K ,

(19)

with the first directly solvable and the second solvable by
quadrature, giving

∂Sz

∂ z
=
√

Θ, (20)

∂Sr

∂ r
= ∆−1

(
P+

√
R
)
, (21)

where

Θ = Q− z2
[

a2(µ2 − ε2)+
L

1− z2

]
, (22)

P = (r2 +a2)ε −aε, (23)

R = P2 −∆
[
µ2 r2 +Q+(L −aε)2] , (24)

with Q=K −(L −aε)2 the Carter constant. We note again
that Θ is a function of z only, Θ ≡ Θ(z), while P and R are
functions of r only, P ≡ P(r) and R ≡ R(r). The HPF is now

S =
µ2

2
τ − ε u+L φ̄ +

∫
∆−1 (P+

√
R)dr+

∫ √ Θ
1− z2 dz.

(25)
As mentioned before, the equations of motion can now be

obtained by differentiation of the HPF, Eq. (25), with respect
to the constants of motion, i.e., by using Eq. (7). Considering
the set of constants as µ , ε , L and K (in place of Q), we
obtain,

0 =
∂S

∂K

=⇒
∫ 1√

1− z2
√

Θ
dz =

∫ 1√
R

dr, (26)

0 =
∂S
∂ µ

=⇒ τ =
∫ r2

√
R

dr+
∫ a2 z2

√
1− z2

√
Θ

dz, (27)

0 =
∂S
∂ε

=⇒ u =
∫ −a√

1− z2
√

Θ

[
aε (1− z2)−L

]
dz+

+
∫ r2 +a2

∆

(
1+

P√
R

)
dr,

(28)

0 =
∂S

∂L

=⇒ φ̄ =−
∫ 1√

1− z2
√

Θ

[
aε − L

1− z2

]
dz+

+
∫ a

∆

(
1+

P√
R

)
dr,

(29)

Diogo Silva
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and in these and henceforth we will fix µ = 1 for test particles
falling along timelike geodesics. While these already com-
prise the dynamics of test particles, their differential forms
are more useful. Thus, by differentiating Eqs. (26)-(29), and
working them out, we obtain

Σ ṙ =
√

R, (30)

Σ ż =
√

1− z2
√

Θ, (31)

Σ u̇ =−a
[
aε (1− z2)−L

]
+(r2 +a2)∆−1 (

√
R+P),

(32)

Σ ˙̄φ =−
(

aε − L

1− z2

)
+a∆−1 (

√
R+P). (33)

With these forms, and following the dependencies of the
Θ. P and R functions, we now use the proper time coordinate
transformation due to Mino,

dτ = Σdλ , (34)

with which the differential form of the equations of motion,
Eqs. (30)-(33), and transforming the φ̄ coordinate into φ ,
become
(

∂ r
∂λ

)2

=
[
(r2 +a2)ε −aL

]2 −∆
[
r2 +Q+(L −aε)2]=

= (1− ε2)(r1 − r)(r2 − r)(r3 −3)(r4 − r) = R(r),
(35)

(
∂ z
∂λ

)2

= Q− z2 [a2 (1− ε2)(1− z2)+L 2 +Q
]
=

= (z2 − z2
1)
[
a2 (1− ε2)z2 − z2

2
]
= Z (z),

(36)

∂ t
∂λ

=
r2 +a2

∆
[
(r2 +a2)ε −aL

]
−a2 ε (1− z2)+aL ,

(37)
∂φ
∂λ

=
a
∆
[
(r2 +a2)ε −aL

]
+

L

1− z2 −aε. (38)

And we now find that the first two equations, Eqs. (35) and
(36), depend only on one variable each and can be solved
directly. The other two, Eqs. (37) and (38) can be solved
afterwards, completely specifying the dynamics of the test
particle. We now evaluate the specific case where particles
fall from the ISSO.

III. SOLVING THE EQUATIONS FOR THE ISSO
A. The Radial Equation

For this case, the radial potential, R(r), has a triple root
at the radius corresponding to the ISSO, rI . Then Eq. (35)
becomes

(
∂ r
∂λ

)2

= (1− ε2)(rI − r)3 (r− r4), (39)

whereby comparison with Eq. (35) yields the other root r4

r4 =
a2 Q

(1− ε2)r3
I
. (40)

With this, we can now obtain the analytical solution
directly. Solving Eq. (39), we obtain

r(λ ) =
rI (rI − r4)

2 (1− ε2)λ 2 +4r4

(rI − r4)2 (1− ε2)λ 2 +4
. (41)

B. The Polar Equation

Likewise, we can obtain the roots for the polar potential,
Eq. (36), by comparing both sides of the equality. Doing so
gives

z1 =

√
1
2

(
A−

√
B
)

, z2 =

√
a2 (1− ε2)

2

(
A+

√
B
)
,

(42)
where

A = 1+
L 2 +Q

a2 (1− ε2)
, B = A2 − 4Q

a2 (1− ε2)
. (43)

and we define
kz = a

√
1− ε2 z1

z2
. (44)

Then, for the differential equation, Eq. (36), we rewrite it
as

(
∂ z
∂λ

)2

= (z2 − z2
1)
[
a2 (1− ε2)z2 − z2

2
]

=⇒
(

∂ z̃
∂ λ̃

)2

=
(
1− z̃2)

(
1− a2 (1− ε2)z2

1

z2
2

z̃2
)
,

where z̃ = z/z1 and λ̃ = z2 λ . This can be recognized as the
differential equation defining the Jacobi elliptic sine function
[8][9]. Thus

z(λ ) = z1 sn(z2 λ |k2
z ). (45)

C. The Azimuthal Equation

For the azimuthal dependence, we start from the differen-
tial equation, Eq. (38), and rewrite it as

dφ =
a
∆
[(r2 +a2)ε −aL ]dλ +

L

1− z2 dλ −aε dλ ,

and replace dλ on the first and second terms on the right-
hand side by dr and dz obtained from Eqs. (39) and (36),
respectively. Doing so makes each term directly integrable,
so that φ is described by

φ(λ ) = φr(λ )+φz(λ )−aε λ , (46)

where the subscript on the different functions on the right-
hand side denote the integrals that originate them, and are
defined by

φr = a
[(r2

I +a2)ε −aL ]λ
(rI − r−)(rI − r+)

+
a√

1− ε2
×

×


 (r

2
−+a2)ε −aL√

r−4 r
3
I− r+−

ln

(
2
√
r−4 +λ rI4

√
(1− ε2)rI−

2
√
r−4 +λ rI4

√
(1− ε2)rI−

)
+

+(r+ ⇐⇒ r−)] ,
(47)

φz =
L

z2
Π(z2

1;ξz(λ )|k2
z ), (48)

where i) Π(n;ϕ|k) is the incomplete elliptic integral of the
third kind, ii) we defined ri j = ri−r j and iii) the double arrow
symbol signifies the next term equals the previous with r+
switched for r− and vice-versa.
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D. The Time Equation

The time dependence is solved in a similar fashion as the
azimuthal one. We start from Eq. (37) and rewrite it as

dt =
r2 +a2

∆
[
(r2 +a2)ε −aL

]
dλ−

−a2 ε (1− z2)dλ +aL dλ ,
(49)

and again replace dλ on the first and second terms on the
right-hand side by dr and dz from Eqs. (39) and (36), respec-
tively. Again, doing so makes each term directly integrable,
giving

t(λ ) = tr(λ )+ tz(λ )+aL λ , (50)

where the functions tr and tz are

tr =
(r2

I +a2) [(r2
I +a2)ε −aL ]λ
rI− rI+

+
2r2

I4 ε λ
4+(1− ε2)r2

I4 λ 2−

− r4 +3rI +2(r++ r−)√
1− ε2

ε arctan

(
rI4λ

√
1− ε2

2

)
+

+


 (r

2
−+a2)[(r2

−+a2)ε −aL ]

r+−
√

(1− ε2)rI4 r
3
I−

×

× ln

(
2r−4 + rI4 λ

√
(1− ε2)rI−

2r−4 − rI4 λ
√

(1− ε2)rI−

)
+

+(r+ ⇐⇒ r−)] ,
(51)

tz =
ε

1− ε2

[
(z2

2 −a2 (1− ε2))λ − z2 E(ξz(λ )|k2
z )
]
, (52)

where E(ϕ|m) is the incomplete elliptic integral of the
second kind and ri j and the double arrow symbol are as
before. The trajectory of the particle is shown in Fig. 1 and
the horizontal projection of this trajectory is shown in Fig.
2. The particle rotates around the ring singularity, where
it eventually falls. Upon reaching each event horizon, the
particle spends what seems for an exterior observer to be
an infinite amount of time before passing through, just as is
verified for the Schwarzschild black hole.

IV. CONCLUSIONS

It is found that analytic solutions describing test particles
falling from the ISSO can be obtained. This procedure
shows the specific gauge choice, i.e., choice of coordinates,
is a critical step and the solutions come in the form of
elliptic functions. Thus, this work serves as an important
stepping stone in understanding particle dynamics in rotating
spacetimes. In particular, and more specifically, the methods
used are expected to be characteristic to this type of system,
so that applying them to other similar systems, such as
compact object binaries, collision and collapse, should come
naturally. We propose that the next line of focus should then
be i) the study of more complex systems; and ii) the study of
different coordinate systems and the advantages they bring
is sutdying different physical phenomena.

Fig. 1. Trajectory of a falling timelike particle, in (r,θ ,φ) coordinates,
and beginning fall from the ISSO with (a,rI) = (0.9,2.6). After initiating
fall, the particle reaches the outer and interior event horizons, r+ and r−,
respectively, before reaching the ring singularity at the center..

Fig. 2. Projection of the trajectory from Fig. 1 on the horizontal plane. The
outer black circle is the ISSO, from which the particle begins fall, and the
inner one is the ring singularity, where the trajectory ends. The red dashed
outer and inner circles are the event horizons, r+ and r−, respectively. Here
we see the relation with the event horizons, where an exterior observer sees
the particle spend an infinite amount of time. The straight lines at the center
are artifacts of computation due to insufficient resolution..
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Spectra of interference between harmonic components due to group
velocity mismatch

G. Vaz1, H.Pires1, G. Williams1, M. Hussain2, M. Fajardo1 and G. Figueira1

Abstract— Using Sellmeier equations, we study interference
patterns in the spectra of harmonics generated by the nonlinear
interaction between ultrashort laser pulses at 3 µm and solid
samples. For most cases, the measured fringe spacings point
to the formation of two harmonic components that propagate
with different group velocities, even if they have the same
frequency. Potential applications are the fine control of temporal
separation and interference spectra by careful sample selection.

I. INTRODUCTION

The generation of low-order harmonics is one of the
most well-established applications of the nonlinear response
of materials to high-intensity laser pulses. The very birth
of the field of nonlinear optics can be traced to the first
observation of Second Harmonic (SH) generation by Franken
et al in 1961 [1]. SH is related to second order (pertur-
bative) term of the response of the medium’s polarization,
P (E) = ϵ0

∑∞
i=1 χ

(i)Ei, to the electric field, E, where ϵ0
is the vacuum permittivity and χ(i) the i-th order electric
susceptibility. Therefore it is no surprise that χ(2) phenomena
are among the best understood in the field thanks to its
intensive study. In 1988 a new harmonic generation method
in gases was observed by Ferray et al [2], which was
marked by harmonics of higher orders and the formation
of a plateau in intensity, unlike the perturbative case where
the harmonic yield diminishes with the increasing order. This
phenomenon would later become known as High-Harmonic
Generation (HHG) and its extension to solid samples was
only possible after the development of high-power lasers in
the mid-infrared, first observed by Ghimire et al [3] in 2011
employing ∼ 3.2− 3.7 µm pulses.

Most studies of SH focus on phase-matched conditions,
however, in non-ideal matching conditions it has been ob-
served the generation of two separate forward-propagating
SHs, e.g. [4], [5], [6]. These are marked by a Group Velocity
Mismatch (GVM), where one of the components travels with
a group velocity associated with its wavelength while the
other with the same group velocity as the fundamental.

Although mainly studied for SH, this phenomenon is
not exclusive to χ(2) as it was observed by Aközbek et
al [7] when they generated Third Harmonics (THs) (χ(3))
during filamentation of laser pulses in air. In this work,
they observed what they called a “... two-color filamentation
effect... due to a nonlinear phase-locking mechanism which

1 Group of Lasers and Plasmas/Instituto de Plasmas e Fusão Nuclear-
Laboratório Associado, Instituto Superior Técnico, Universidade de Lisboa,
1049-001 Lisboa, Portugal

2 Extreme Light Laboratory, Department of Physics and Astronomy,
University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA

Corresponding author: goncalovaz98@tecnico.ulisboa.pt

couples the fundamental and the TH pulse together, with
constant phase difference inside the filament”. These phase
locking mechanisms for both χ(2) and χ(3) were validated by
Roppo et al [8] by means of numerical simulation. In their
work they observed the formation of 3 harmonic components
at the surface of the sample: i) a small backward (reflected)
component, ii) a free forward (transmitted) component which
separates from the fundamental, and iii) a forward phase-
locked component trapped by it.

More recently, Garejev et al [9] observed two third har-
monic components in a solid sample of CaF2. They used
1.98 µm laser pulses to generate harmonics in a wedge-
shaped CaF2 sample so they could vary the propagation
length within the medium. For larger propagation lengths (∼
1 mm) the spectrum would possess spectral fringes, due to
interference between the harmonic components, while with
smaller lengths the expected fringe spacing would exceed the
Full Width At Half Haximum (FWHM) of the spectrum and
therefore no fringes were observed. Yet further studies with
other materials or higher harmonics are so far lacking.

In this work, we study the spectral fringes of low-
order harmonics (3rd and 5th) generated in transmission by
the propagation of short mid-infrared laser pulses through
standardized transmission windows. For each harmonic, we
calculate the fringe spacing both experimentally and theoret-
ically with the aid of Sellmeier equations.

II. METHODS

In this section, we proceed to explain the methods used
to acquire and treat the data in this work.

A. Experimental setup

We used a Yb:YAG laser (Amphos2000, AMPHOS) deliv-
ering 0.75 mJ, 1 ps pulses at 100 kHz and central wavelength
of 1.03 µm to pump an Optical Parametric Chirped-Pulse
Amplification (OPCPA) system (Starzz, FASTLITE). The
output of the latter consists of 3 µm, 40 fs pulses with a
repetition rate of 100 kHz.

For the generation of the harmonics we placed our stan-
dard samples, see Tab. I, in a rotation mount at the focus of
the OPCPA, allowing us to orientate the samples around its
axis, see Fig. 1. At the focus we obtained up to ∼50 TW/cm2

in peak intensity.
After generation, the harmonics were then collimated into

a prism separating the different wavelengths in space so
that they could be measured separately using an ultraviolet
optical fiber connected to a spectrometer (FLEX-STD-UV-
Vis-NIR, SARSPEC). The separation was required to block
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the fundamental as the mid-infrared light could damage
the optical fiber in use. A complete description of the
experimental setup and procedure can be found in [10].

TABLE I: Samples used in this work.

Material Thickness (mm)

CaF2

1

3

Fused Silica 5

LiF 3

Sapphire
1 (unknown cut- A, M or R)

2 (C-cut)

Fig. 1: Simplified experimental setup where short 3 µm laser
pulses are focused in a solid sample to generate harmonics.
These are then collimated into a prism which separates them
while the fundamental is sent to a beam dump. Each har-
monic is then measured separately using a movable optical
fiber coupling connected to a spectrometer. A full version
can be consulted in [10].

B. Data treatment

For each of the harmonics, we used the spectrum obtained
when the orientation of the sample was set to give the
maximum number of integrated counts in our spectrome-
ter, for a better Signal-to-Noise Ratio (SNR). All spectra
were then fitted to a Gaussian to extract the central wave-
length of the harmonic, λH , allowing us to calculate an
expected/theoretical fringe spacing as [11]:

∆λtheo =
λ2
H

d (ng(λ0)− ng(λH))
, (1)

where λ0 =3 µm is the central wavelength of the fundamen-
tal, d is the sample’s thickness, and ng(λ) = n(λ)− λdn(λ)

dλ
is the group index of the sample for the wavelength λ. The
refractive index of the medium, n(λ), was obtained from the
Sellmeier equations of these media, see appendix.

The experimental spectral fringe, ∆λ, was defined as
the maximum separation between consecutive peaks, we

took this approach instead of a center of mass because in
some cases we were expecting fringe spacings of a few
nanometers, e.g. Fig. 4. To help reduce the effect of noisy
peaks we also calculated ∆λ from spectra smoothed by a
Savitzky-Golay filter1.

III. RESULTS AND DISCUSSION

In general, we obtained a good agreement with the theory,
in particular for spectra that demonstrated prominent fringes,
see Fig. 2, pointing to the existence of two harmonics
components with a GVM as it was observed by the teams
of Aközbek [7] and Garejev [9]. The small deviation could
be associated with the usage of an incorrect wavelength,
experimental uncertainty, and possible discrepancies of the
refractive index from the Sellmeier equation.

It is important to notice that for the 1 mm Sapphire sample
the positions of the fringes change with the orientation of the
sample while the spacing does not change significantly. This
might be related to the birefringence of the sapphire for this
cut. From previous works, we could conclude that the cut
should be either A, M, or R-cut (birefringent) while the 2
mm Sapphire is C-cut (“zero degree”, non-birefringent). This
could also be the cause of the higher deviation from theory
of the results in Fig. 2b.

As for the samples that did not result in visible interfer-
ence, for most cases this could be related to one of two
situations:

1) As mentioned in section I if the GVM is too small
the fringes would be greater than the FWHM of the
harmonic, therefore not observable. See e.g. Fig. 3.

2) In opposition the mismatch can be of such a magnitude
that the spectral fringes are too close to be resolved by
the spectrometer. See e.g. Fig. 4.

In almost all instances we could not observe spectral
fringes in harmonics higher than 3rd either due to the
low intensity of these harmonics (low SNR) or because
the fringes would not be measurable for our samples and
wavelengths, see e.g. Fig. 5. As such we could not verify if
the formation of this double component harmonics can occur
for nonlinearities above χ(3). In future works, we would
need to select samples with the right thickness and GVM to
generate measurable spectral fringes at these wavelengths.

However, there were two particular cases where we ob-
served interference patterns in 5th harmonics that were not
related to the difference in group velocities, see Fig. 6.
One possibility is that these interference patterns are instead
consequence, still, of two harmonic components but in this
case, one results from the short trajectory of the electrons in
the conduction band during HHG, while the other (generated
later) from the long trajectory as observed by Kim et al [12]
in the 7th harmonic of an 800 nm laser, generated in a 430
µm A-cut Sapphire. To verify this possibility we would need
numerical simulations similar to the ones performed by them.
In the case of Fig.6a, it could be argued that the difference

1Corresponding to the function savgol_filter in the scipy.signal library of
Python.
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(a) LiF sample.

(b) 1 mm sapphire sample.

(c) 2 mm sapphire sample.

Fig. 2: TH spectra displaying prominent fringes and demon-
strating good agreement between ∆λ and ∆λtheo. For the
cases of (a) and (c) the positions of the peaks are orientation
independent, which is not the case for (b) possibly due to
the cut of this sapphire sample. The latter could also explain
the higher deviation from theory of the fringe spacing.

Fig. 3: Example of TH spectra where the fringe spacing
exceeds the FWHM, generated in a 1 mm CaF2 sample.
As we can see in the filtered data we only have one peak
and it is not possible to calculate a fringe spacing (NA- Not
Applicable). The raw data presents some peaks but are likely
related to noise.

Fig. 4: Example of TH spectra where the fringe spacing is
too small for our spectrometer to resolve the separate peaks,
generated in a 5 mm Fused Silica sample. Although we can
still measure a “fringe spacing" (possibly from noise) close
to the theory we cannot observe any fringes similar to Fig.
2.

between the experiment and the theoretical prediction by
GVM is still within expectation, however, taking into account
that this is a 5th harmonic and we might have the competing
process of HHG, we cannot infer for sure without simulation.

IV. CONCLUSIONS

In this work, we studied the spectral fringes observed in
harmonic generation spectra. For 3rd harmonic these were
associated with the generation of two harmonic components,
at the entrance of the sample, traveling at different group
velocities. In some cases, we could not observe these fringes
either because the spacing was too small to be resolved by
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Fig. 5: Expected spectral fringes in function of the harmonic
wavelength calculated from Eq. 1 for all samples in Tab. I.
The black dashed lines correspond to the expected harmonic
wavelength from the 3rd to the 9th (from right to left)
assuming λ0 =3 µm.

the spectrometer or was too big (above the FWHM of the
harmonic) to be observable.

This was the case for most 5th harmonics and so we are
not able to test the existence of these two components for
higher orders of χ(n). To test this we would need to carefully
select different samples (thickness and GVM) to assure the
generation of visible fringes.

For two specific cases, the fringe spacing was observable
but not within expectations. One possibility is that instead
of the GVM the source of the temporal separation is the
difference in the trajectory of the electrons during the HHG
process. The verification of this would require numerical
simulation as discussed in [12].

The observation of these fringes indicates that we could
shape our harmonic spectrum by changing either the material
or its thickness. In particular, we could use wedge samples,
as in the case of [9], placed in a translation mount allowing to
diminish or increase the fringe spacing/harmonic separation
through positioning.
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APPENDIX

The Sellmeier equations used in this work are specified
through Eq. A.1 and its coefficients in Tab. A.1. These
equations were taken from the refractiveindex.info
database.

n(λ) =

√
B0 +

B1 · λ2

λ2 − C2
1

+
B2 · λ2

λ2 − C2
2

+
B3 · λ2

λ2 − C2
3

(A.1)

(a) 3 mm CaF2 sample.

(b) 1 mm sapphire sample.

Fig. 6: Cases of 5th harmonic spectra which presented fringe
spacings that were not within expectations for the respective
sample and propagation length.

TABLE A.1: Coefficients of the Sellmeier equations. Bi is
adimentional and Ci is in micrometer.

CaF2 Fused Silica LiF
Sapphire

ordinary ray extraordinary ray

B0 1.33973 1 1 1 1

B1 0.69913 0.6961663 0.92549 1.4313493 1.5039759

C1 0.09374 0.0684043 0.07376 0.0726631 0.0740288

B2 0.11994 0.4079426 6.96747 0.65054713 0.55069141

C2 21.18 0.1162414 32.79 0.1193242 0.1216529

B3 4.35181 0.8974794 - 5.3414021 6.5927379

C3 38.46 9.896161 - 18.028251 20.072248
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How X-ray free electron lasers have enabled a new perspective on high
energy density plasma physics*

Lucas Ansia1, Gareth Williams1 and Marta Fajardo1

Abstract— In this review, we explore how the advent of X-
ray free-electron lasers (XFELs) has revolutionized the study of
warm dense matter (WDM) by enabling the creation of high-
quality samples in the laboratory. One of the most important
results has been the direct measurement of the continuum
depression, which has allowed for a more accurate character-
ization of the plasma state. Additionally, collisional radiative
models together with novel experimental results have been used
to characterize the evolution of WDM on the femtosecond
timescale, allowing an unprecedented understanding of such
extreme conditions.

I. INTRODUCTION

Over the past two decades, X-ray free-electron lasers
(XFELs) have undergone significant progress, resulting
in peak brightness in the XUV and X-ray regions that
were previously only attainable in the optical and infrared
ranges. These lasers have achieved intensities greater than
1018 W/cm2 [1], which has opened up new possibilities in
high energy density science, a field highly related to many
disciplines such as astrophysics [2] and inertial fusion [3].

High-density matter (HDM) refers to the study of matter
under extreme conditions, such as high pressure, radiation,
and temperature, which exceed 1011 J/m3. Warm dense
matter (WDM) is usually referred to as the state lying
between solid and plasma state when the degenerate effects
are predominant, i. e. strongly coupled regime.

Studying matter under extreme conditions presents a chal-
lenge in itself. The primary approach to recreate these states
is by focusing high-energy lasers and particle beams into
solid samples. However, non-uniformities and a decay time
in the range of femto to picoseconds create several difficulties
in measuring fundamental phenomena in these plasmas.

With the development of XFELs, it has become possible
to create samples with larger volumes, greater uniformity,
and well-defined properties such as temperature and density.
This has opened up a new realm of experiments dedicated
to validating existing codes and measuring fundamental
parameters in HDM. Typical temperature-density conditions
achievable with XFELs when irradiating solid targets are
100− 200 eV and 1024 cm−3 [4].

XFEL technology has allowed for reliable measurement
of continuum lowering, which refers to the reduction in

*This work was supported by Fundação para a Ciência e a Tecnologia
(FCT) under the Advanced Programme in Plasma Science and Engineering
(APPLAuSE) PhD program.

1Experimental Group of laser and plasmas (X-GoLP), Instituto
de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universi-
dade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal.
lucas.ansia.fernandez@tecnico.ulisboa.pt

Fig. 1. Schematic representation of photoionization process, where an
incoming photon ejects a bound electron to the continuum. In the right
is pointed the usual spectroscopy notation for the atomic level and K|α
transition.

the energy required to ionize a material under high-density
conditions. This phenomenon occurs due to the screening of
neighbouring ions and free electrons.

Spectroscopy is the most commonly used diagnostic tech-
nique as it allows for the measurement of plasma evo-
lution and can be replicated using collisional radioactive
models. These measurements enable the characterization of
ion/electron dynamics on a femtosecond scale in unprece-
dented experimental conditions.

The paper is structured as follows. First, we present the
fundamentals of XFELs and their advantages in order to
create WDM samples. Measurements of continuum lower-
ing and its implication are revisited in the second section.
We conclude with an introduction to collisional radioactive
models together with some exemplifying results.

II. WARM DENSE MATTER

A. XFEL fundamentals

XFELs are capable of producing high-power and coherent
radiation in regimes that are not accessible with conventional
lasers and synchrotron radiation sources. The basic idea
behind them involves first accelerating a highly compressed
bunch of electrons to relativistic velocities.

The electron pulse then passes through an undulator, which
is a periodic structure with alternating magnetic fields. An
oscillating trajectory is induced, emitting highly collimated
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radiation in the undulator direction. Due to the periodicity
of the undulator, there is a resonant frequency λr for the
emitted photons [5]:

λr =
λu

2γ2
0

(1 +
K2

0

2
). (1)

Here, λu is the undulator period, K0 is the undulator
characteristic parameter [6], and γ0 is the usual Lorentz
factor. For an undulator parameter on the order of magnitude
of unity, the emission frequency is a factor of γ−2

0 lower than
the undulator period.

At XFELs, the coherence of the emitted pulse is achieved
via the Self Amplified Spontaneous Emission (SASE) pro-
cess, which arises from the collective behaviour of elec-
trons and their interaction with the emitted radiation. As
electrons travel through the undulator they are grouped into
micro-bunches leading to in-phase radiation emission as
demonstrated by Saldin and Kondratenko in 1980 [7]. Non-
destructive interference is created in the emission process,
allowing for the achievement of massive intensities.

B. XFEL-matter interaction and Sample evolution

The main absorption process while irradiating a solid
sample is the photo-ionization of the inner shells. A scheme
representing this process along with the usually employed
spectroscopy notation is shown in Fig. 1. The lower cross-
section of this interaction (in comparison with the main
absorption process in the infrared-visible) is responsible for
the high level of sample uniformity achievable using XFELs.

After the laser arrival, unstable atom configurations are
created. Lower energy holes are filled mainly via Auger
emission and photo de-excitation. The relative strength of
both processes depends on the atomic number (low Z ma-
terials present a strong preference for the non-radioactive
process). Auger emissions create highly energetic electrons,
which transfer the deposited laser energy to the electrons in
the continuum or the ion lattice.

Electronic transitions, for example, Kα for the L to K
transition (Fig. 1), lead to the characteristic XFEL emission
spectra. Fig. 2 shows the results obtained by Vinko et al.
[8] from a 1.0-mm-thick aluminium (Al) foil from incident
photon energies between 1560-1820 eV. As the atom starts to
ionize, the reduced screening leads to a tighter bound of the
remaining electrons, increasing the energy for both ionising
the inner shells (K-edge) and for the emitted radiation in
the K-L transition. These higher energy transitions are often
called satellites. Note that Roman numbers are used to
represent the different ion charge states, being 3+ the ground
state for Al (3 M-shell, third valence band, electrons are free-
electrons like).

The XFEL energy can be tuned in order to only be able
to ionize the main transition. This is clear for the aluminium
spectra as in the minimum energy only the 4+ line is
observed and constitutes a unique measure of the potential
depression. Nonetheless, some emission lines a priory are
forbidden, since the incident photon energy lower than the
K-edge, is observed. In this case, collisional ionization of

an already photo-ionized state is the alternative path to
reach these higher satellites, constituting a measure of the
collisional rate between electrons and ions, as we will see in
the modelling section. The other possible path, represented
as a white dotted line, is the resonant absorption, where a
K-shell electron is promoted to an L-shell vacant.

III. CONTINUUM LOWERING PHENOMENA

As it was said in the introduction, the multi-body process
arising in warm dense plasmas leads to a decrease in the
continuum (minimum required energy to photo-ionize a spe-
cific shell). This effect is also known as ionization potential
depression (IPD). It plays a key role as it limits the available
bound states in the system corresponding to strong changes
in the thermodynamic properties such as equations of states,
opacity and emissivity, all fundamental for hydrodynamic
simulations [9], [10].

Several models have been suggested in the literature to
predict this behaviour. Nonetheless, the lack of experimental
results in such an environment limited potential validations.
XFEL photon energy is tunable as it depends on the un-
dulator periodicity and the strength of the magnetic field.
Scanning the emission Kα spectra for different energy allows
us to infer the minimum energy needed to photo-ionize the
inner shell, as only above it is possible to create the hole
needed in the K-shell. This constitutes a unique technique to
measure the IPD, for a well know temperature and density,
of WDM and HDM.

Even more, because of the clear footprint of different
satellites in the emission spectra, it is able to study how
IPD varies as a function of the ionization. Fig. 3 shows the
emission spectra obtained by Ciricosta et al. [11] at the LCLS
for a magnesium target, along with a specific emission line
for different charge states represented horizontally for clarity.

Fig. 2. Kα emission spectra as a function of incident photon energy in a
logarithmic colour scale. Roman numbers represent the ion charge state (red
for single K-hole and blue for double). Resonance K-L photo-absorption
is highlighted in the dotted white line. K-edge line was calculated via a
modified version of the SP model [8].
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Fig. 3. a) Kα spectra as a function of the incident photon energy and b) emission lines for different charge states. Discontinuous lines are a visual guide
to see the plateau and identify the K-edge [11].

Dotted lines were added in order to remark where the K-edge
is observed for each ionization stage.

On the modelling side, the Stewart and Pyatt (SP) model
[12], an interpolation between the low-temperature Debye-
Huckel (DH) theory[13] and the Ion sphere model[14], was
the most used approach to account for this phenomenon
because of its agreement with laser shock experiments
accounted at ORION [15]. However, results from XFEL
favoured the older Ecker-Kröll (EK) model [16] as the SP
tends to underestimate the IPD [17].

Each model agreeing with different results without a
clear physical meaning remark the necessity of more ro-
bust models to take into account the IPD. Lately, studies
employing first-principle density functional theory (DFT)
calculations have emerged as an alternative [18], [19]. Even
so, finite temperature DFT in the WDM regime is still a
developing field and the required computational resources
make it difficult to implement in fully atomic/collisional
radioactive codes.

IV. COLLISIONAL-RADIOACTIVE CODES

In the conditions of the experiments, non-local thermody-
namic equilibrium (N-LTE) can be assumed. This is mainly
because of the ionic populations produced by the incident
radiation (not in equilibrium with the system). Even if that
collision rate is high, local thermodynamic equilibrium (LTE)
can underestimate the population of higher ionize states,
specifically in the first femtosecond on interaction while the
lattice is still cold. The usual approach to simulate the full
relaxation are the so-called collisional radioactive models
(CRM) [20].

The simplest CRM codes assume a vast number of ionic
states interacting with a free electron gas in thermal equilib-
rium. For each ion, atomic levels and transition rates for all
relevant atomic processes are calculated. Time resolve evo-
lution is obtained by solving the set of coupled differential
rate equations,

dni

dt
=

N∑

i ̸=j

njRji − niRi, (2)

where ni represents the density of each ionic state, Rji is
the total rate of creation of level i and Ri is the total rate
of destruction of the same level. In order to calculate the
atomic levels isolated atom approximations are commonly
used together with an IPD model (EK is employed for XFEL
experiments as stated above). The high number of possible
states is not always computationally manageable, so energy
level super-configurations (SC)[21], [22] are used. Rates are
calculated by making use of relativistic levels obtained via
detailed atomic codes such as the Flexible Atomic Code
(FAC) [23] or HULLAC [24], and then averaged into each
atomic shell as follows,

RΞ→Ξ′ =

∑
i∈Ξ

∑
j∈Ξ′ gi exp(− Ei

kTe
)Rij∑

i∈Ξ gi exp(− Ei

kTe
)

, (3)

Where Ξ and Ξ′ are the initial and final SC and i, j run
all over the possible states within the configurations.

Ciricosta et al. [25] studied the evolution of a 1 µm Al
foil, irradiated with photon energies between 1460 and 1830
eV at peak intensities of 1017 W/cm2. Results were obtained
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Fig. 4. Top, charge state and temperature evolution as a function of time.
Bottom, emission spectra also as a function of time. White roman number
represents the charge states that are responsible for such lines. White arrows
remark the expected collisional ionization effects [25].

using the SCFLY [26] code, a CRM model based on super
configurations. Fig. 4 shows the charge states, temperature
and emission spectra as a function of time for an incident
1580 eV photon. For that specific energy, only the V and
VI satellites can be directly ionized. Nevertheless, resonant
absorption (it can be seen from the fact that the emission
is at the same energy ∼ 1580) from a K-shell promoting to
the L-shell leads to X-ion fluoresce. Collisional ionization
triggers weaker emission in the ions VI, IX and XI.

This weaker emission is highly dependent on electron-ion
coupling. Q. Y. van den Berg et al. [27] resonantly pumped
the 1s - 2p transitions in order to study the off-resonance
spectra and measure the collisional ionization cross-section.
It was concluded that several up-to-date models were un-
derestimating the collision rate for such extreme conditions,
after introducing them into the SCFLY code and observing
a lower emission intensity.

More complex effects have been developed in the last
years to better understand plasma evolution. Electrons in
the continuum have been modelled via the Fokker-Planck
formalism to take into account non-thermal effects and
determine whether or not is possible to assume an instant
thermalization [28], [29]. Also, degeneracy effects have
been studied including Pauli blocking in the transition rates
calculations and considering Fermi Dirac statistics for the
free electrons gas [30], [31].

V. CONCLUSIONS

High energy density regimes are now achievable thanks to
the advent of X-ray free-electron lasers in the last few years.
The measured spectra while pumping a solid to hundreds
eV contain footprints of the system evolution during the
heating/relaxation times.

The main XFEL-matter interaction allows establishing a
unique measure of the ionization potential depression at the
WDM regime, pointing to a poor agreement with the most
commonly used analytical models.

Simulations employing collisional radioactive models have
brought new possibilities, together with experimental results,
to measure femtosecond dynamic as the ionic yield or
collisional effect in Warm Dense Matter.
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Implementing the Bethe-Heitler cross section with Neural Networks

Óscar Amaro, Chiara Badiali, Marija Vranic , Bertrand Martinez 1

Abstract— Plasmas in extreme conditions are prone to exten-
sive particle production. These processes need to be properly
accounted for in computer simulations; however, standard
methods often trade accuracy for speed. In this work we train
a neural network to predict the probability distributions of
the Bethe-Heitler process required in this computational step,
leading to competitive speed, accuracy, and generalization to
higher dimensional problems.

I. INTRODUCTION

Plasmas in extreme conditions of energy and electro-
magnetic field intensities exhibit highly nonlinear dynamics
which need to be properly captured in computer simulations.
One of the most common approaches for accurate and self-
consistent simulation of such plasma systems is the particle-
in-cell (PIC) approach, one example of such a code being the
fully-relativistic, massively parallel code OSIRIS [1]. The
PIC framework has boosted development in applied research
fields such as inertial confinement fusion [2], plasma-based
particle accelerators [3], laboratory astrophysics [4], quantum
electrodynamics, nuclear and particle physics [5].

Despite all this progress, the PIC approach is too computa-
tionally expensive to spatially resolve binary processes such
as collisions between charged particles. To circumvent this
problem, additional modules are necessary, namely Monte-
Carlo (MC) routines. These algorithms pair particles together
when they are close in phase-space, and evaluate the energy
exchange, particle production, or annihilation by sampling
the probability density distribution of the process. MC mod-
ules have been actively developed for several decades and
are now a standard numerical tool [6]–[10].

Numerical modeling of recent and near-future experiments
in setups where high intense laser pulses interact with solid
targets requires high-fidelity simulation codes (see figure 1a)
). These need to resolve not only the classical plasma dynam-
ics (particle trajectories, current and field couplings, etc), but
also the quantum/stochastic phenomena that shape the phase-
space of the system in very short time-space scales and with
creation/depletion of particles. Amongst these phenomena
are the lowest-order Coulomb QED processes like Bethe-
Heitler and Bremsstrahlung. The former relates to the decay
of a gamma-ray photon with energy k in the vicinity of the
atomic Coulomb field of an atom with charge Z to produce a
positron with energy γ+ and an electron with energy k−γ+,
while the later relates to the emission of high energy photons
by leptons (see figure 1b) ).
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Stochastic production of particles in these extreme envi-
ronments follows specific probability distributions, which are
functions not only of the initial and final (energy) states of
the intervening particles, but also of the environment they
are in (e.g., the intensity of the electromagnetic field). These
probability distributions are used in MC algorithms that are
often structured in two steps: first, the "total" cross section
(TCS) of the event is computed to determine if a particle
is created; second, if this is the case, then the state of the
final particle is sampled from the "differential" cross section
(CDF). These cross-sections often involve integrals of spe-
cial mathematical functions or other expensive subroutines,
which rendered their computation in run-time inefficient in
early-day MC codes.

Some solutions have been proposed for the calculation of
these processes; however, there is often a trade-off between
speed, accuracy, and generality. For example, some codes
include look-up tables for interpolation in runtime, which
although fast, can lead to significant memory usage (which
grows exponentially with the number of dimensions of the
input parameters), clutter the code and lead to nonphysical
numerical artifacts.

Several particle-in-cell codes have been added modules to
simulate the Bethe-Heitler process [11]–[13]. In particular,
in [13] this implementation, although accurate, depends on
look-up tables, which can take up significant memory in the
code, and usually only applies to a limited set of Z materials.

b)a)

Fig. 1. a) Schematic of setup where intense laser interacts with a gold
target, producing pairs [14]. b) Schematic of the Bethe-Heitler processe [13].

Besides look-up tables, there are relatively few alternatives
explored in the literature. In [15] the authors implement
Chebyshev polynomial approximations of the rates, which
is more efficient and accurate than the standard table inter-
polation. However, the number of Chebyshev coefficients for
3D or higher input space functions is impractical, meaning
the method does not generalize well for high dimensional
problems.

In contrast, Dense Artificial Neural Networks (NN) are
routinely used as efficient, accurate and compact models for
data regression [16], [17].

In this work we prepare the stage to replace part of
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the MC routine of the OSIRIS code for the Bethe-Heitler
process with two neural networks. The resulting well-trained
and optimized NNs enable fast and accurate evaluation,
reduced memory storage and ability to generalize well to
problems where probability rates depend on many input
parameters (high-dimensionality), thereby solving the three
issues identified in the literature. This was already proven
in the context of Inertial Confinement Fusion (ICF) where
NNs demonstrated to speed up the run-time evaluation of
spectral opacities in non-local thermal equilibrium in the
hydro-rad code HYDRA to model an ICF hohlraum [18].
Our numerical framework builds upon the work developed
by Badiali et al [19] and adapt it to implement the Bethe-
Heitler cross section.

This report is structured as follows: in section II we
explain how the datasets for the Bethe-Heitler cross sections
were produced; in section III we detail the machine learning
approach used in this work; in IV we present the main results
of this work; finally, in V we present the main conclusions
and list possible future steps in this project.

II. DATA GENERATION AND PREPARATION

In this section we explain how datasets for the training of
the model were generated, "prepared" and "balanced".

Generating the data: contrary to the case of [19], our
training data does not originate from OSIRIS simulations.
Instead, simple scripts compute the analytical cross sections
and their transformations such as the CDF and the TCS.
Initially, the scripts to generate the data were written in
Python and were used to produce datasets of circa 1
million entries for the two cross-sections, where the first
columns represented the input parameters and the last column
the target value. To attempt a more representative dataset
over the input domain, variables were generated from the
grids: Z ∈ [1, 100] (linspace), k ∈ [2.1, 2 × 104] mec

2

(logspace) and γ+/k ∈ [0, 1] (linspace), where linspace
represents a uniformly spaced sequence of number over the
respective interval (and logspace the equivalent uniformly
spaced sequence over the logarithm of the interval).

Preparing the data: over this input domain the TCS can
range between 10−32 and 10−26 m2 . Instead, we normalize
the data to become close to the interval [0, 1]. One such
transformation is taking the negative logarithm of the cross-
section and then to normalize this quantity. In contrast, the
CDF is by definition already in the range [0, 1]. However,
for all parameters this curve is always close to CDF ∼
γ+/k, which makes it difficult for the model to distinguish
between different input combinations. Instead, we create a
new variable CDF − γ+/k, such that the model learns this
difference. We proceed to normalize this variable to the range
[0, 1].

Balancing the data: since the cross sections are very
nonlinear functions of the input parameters, some values of
the target can occur many orders of magnitude more often
than other. This leads the NN to disregard the statistically
rare entries and to perform poorly on the entire input domain.
Several approaches exist to avoid this issue. In this work
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Fig. 2. a) Schematic of a representative Neural Network architecture used
in this work. b) Contourplot of the Bethe-Heitler differential cross-section,
showcasing the symmetry around γ+ = k/2.

we apply an algorithm that takes a dataset and reduces the
frequency of the over-represented entries and oversamples
the under-represented until achieving a value close to the
average, producing a new dataset with approximately the
same number of entries as the original one.

Whereas the main goal of data preparation is to change
the interval of the target values, the goal of data balancing
is to then change the distribution of the prepared data over
this new interval.

After testing the initial input domain of parameters, we
observed that the model was having some trouble learning
the cases when the CDF was close to 0 (which happens when
γ+/k → 0). We then decided to halve the domain (using the
symmetry of the cross section) such that γ+/k ∈ [0.5, 1].
This choice appeared to resolve the previous issue. Since the
input domain was now smaller, a second random number (1
bit) would then be needed to decide if the produced particle
has energy γ+ (positron) or k − γ+ (electron).

After training of the model, the output of the neural
network needs to be translated back to real units, reversing
the data preparation step.

III. MODEL TRAINING

In this section we describe the machine learning approach
followed in this project.

We train fully connected-layers, dense Deep Neural Net-
works (DNNs) with varying number of inputs, hidden layers
(< 4 hidden layers), but always with 1D output, since
the goal is to learn scalar probability distribution functions
(see figure 2). We choose this approach over alternative
architectures such as Convolutional or Recurrent Neural
Networks because of their simplicity and compactness.

We use the Keras framework [20] to build and train
the neural network, the Python libraries Numpy, Pandas
and Scipy, and C++ using the boost scientific library [21].
Training is carried out until the loss (a measure of the
distance between the prediction of the network and the real
values) has decreased significantly and stabilized. In this
work we assume that the plasma temperature is T = 0 keV
(cold) and particles are unpolarized, which is usually a good
first approximation, that could nevertheless be made more
complex in the future. By definition the CDF is monotonic;
however this behavior is not explicitly enforced in the NN.
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If the accuracy of the model is sufficiently high, this issue
can be mitigated.

Contrary to [19], in this work we are not replacing the MC
routine with a conceptually different approach; instead, we
are replacing the computation of the TCS and the CDF within
the MC module by a possibly more efficient and scalable
approach.

For both cross sections, the activation function between
layers is ReLU, the output node has a Sigmoid activation
function and the optimizer used was Adam. In the case
of the TCS, the loss function and the metric were mape
and binary cross entropy, respectively, while for the
CDF these were mae and mape. Several approaches were
found to improve the training of the NNs, namely data
balancing, batch normalisation and increasing the number
of entries of the dataset (see section II).

Additionally, it was observed that the CDF NN could not
accurately reproduce the data when γ+ and the CDF were
close to 0. Since the CDF presents some symmetry around
γ+ = k/2, the information contained in the intervals γ+/k ∈
[0, 0.5] and γ+/k ∈ [0.5, 1] is the same. Therefore, we split
the datasets into these two cases, and verified that the trained
models performed better in the interval [0.5, 1].

IV. RESULTS

In this section we report the results of the training of the
networks.

For the TCS, the layout with two layers, 12-12 nodes
presented the best results, having obtained an average relative
error on the order of 5 % (see figure 3).

a) b)

Fig. 3. Results for the total cross section: a) Evaluating the NN model
prediction against theoretical results for specific parameters, b) Evaluating
the NN model prediction against theoretical results for all training data.

In the case of the CDF, the best performing architecture
was the 3 layers, 8-16-8 nodes, for which we obtained an
average relative error below 0.1% (see figure 4).

These results report to a later stage of the project, when it
was decided that larger datasets were required, going from 1
million to 10 million entries both for the TCS and CDF. The
choices of nodes per layer referred previously for the NNs led
the TCS have 209 trainable parameters, while the CDF has
327. This contrasts with the look-up table approach described
in section I, which can require around 800 parameters per
atomic number.

a) b)

Fig. 4. Results for the differential cross section: a) Evaluating the
NN model prediction against theoretical results for specific parameters,
b) Evaluating the NN model prediction against theoretical results for all
training data.

V. CONCLUSIONS

In this work we have presented initial results from the
training of neural networks to approximate probability distri-
butions used in Monte-Carlo simulations in plasma physics.
Two distributions were considered: the total cross section of
the Bethe-Heitler pair production process and the associated
cumulative distribution function of the differential cross
section. In the former, we obtained an average relative error
on the order of 5 %, whereas for the later we obtained below
0.1%. From the models tested, the choice of 2 hidden layers
with number of nodes 12 − 12 for the TCS and 3 hidden
layers with number of nodes 8 − 16 − 8 for the CDF gave
the best accuracy. These trained models are now very close
to being implemented in a production code.

As future work, we will implement the trained neural
networks in OSIRIS and compare the performance/accuracy
to the look-up table.

Despite having focused on the Bethe-Heitler process in
this work, our approach can be generalised to any process
relevant in plasma physics (Coulomb deflections, impact
ionisation, three-body recombination, D-T fusion), in atomic
physics (atomic de-excitation) and radiative transport (photo-
ionisation, radiative recombination, Compton scattering).
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