

Fabrication of free-standing graphene and derivatives via a microwave plasma-based method

Ana Inês Vieitas de Amaral Dias

J. Henriques, N. Bundaleska, E. Felizardo, F.M. Dias and E. Tatarova Instituto de Plasmas e Fusão Nuclear, IST, ULisboa, Lisboa, Portugal

Encontro Ciência'18 • 2nd-4th July 2018 • Lisboa, Portugal

PEGASUS <u>P</u>lasma <u>E</u>nabled and <u>G</u>raphene <u>A</u>llowed <u>Synthesis of U</u>nique nano<u>S</u>tructures

The project's ambitious purpose is

- to translate the unique properties of plasmas into extraordinary material characteristics
- to create novel forms of matter

by using a multitude of specific plasma mechanisms

- to control the energy
- matter transfer processes at nanoscale

4M € Project → 2.5M € for Portugal

https://www.ipfn.tecnico.ulisboa.pt/PEGASUS/

Goal FSG and derivatves synthesis

• Ultrahigh specific surface area

Energy storage and conversion devices

Eg. Supercapacitors

Microwave plasma-based method for FSG and N-doped graphene synthesis

ipfn

Decomposition process Tayloring plasma conditions

More C₂ radicals in plasma \rightarrow more planar sp² carbons on graphene sheets

Control over the synthesis process and improve the structural quality

HESGM beam-line at BESSY II synchrotron, Berlin

Encontro Ciência '18 • 2nd – 4th July 2018 • Lisboa, Portugal

Ana DIAS

Photon energy (eV)

Quality of graphene sheets Raman spectroscopy analysis

Plasma tailoring \rightarrow 2D/G \rightarrow Number of mono-layers \rightarrow D/G \rightarrow Defects, sp³ carbons \rightarrow homogeneity

LabRam HR Visible (Horiba Jobin Yvon)

ipfn N-graphene XPS to determine the elemental composition

d)

395

XPS

SEM images from: JEOL, JSM-7001F

Doping level:

- $N_2 \rightarrow 0.2\% \text{ N/C}$
- Other nitrogen content precursor \rightarrow 5.6% N/C

PEGASUS shows

- Very high potential for controllable single step large-scale fabrication at atmospheric pressure of:
 - Free-standing graphene & N-graphene (without expensive catalysts & hazardous chemicals)
- Scalability (> 3mg/min)
- Promotes microwave plasmas as
 - ✓ Green
 - ✓ Competitive
 - Cost-effective alternative to the chemical methods used today

Aknowledgements

• Plasma Engineering Laboratory N-Prime/IPFN/IST/ULisboa, PORTUGAL

Elena Tatarova Francisco M. Dias Neli Bundaleska Dmitry Tsyganov Júlio Henriques Edgar Felizardo Inácio Dionísio Susana Espinho

IPFN activities receives financial support from FCT through project UID/FIS/50010/2013

Collaborations:

GREMI, CNRS/UOrléans, France

Jozef Stefan Institute, Slovenia

Synchrotron BESSY II, HZB, Berlin, Germany

Centro de Química-Física Molecular/ IST, Portugal

CAU, Kiel, Germany

Sofia University, Bulgaria

C2C New Cap, Portugal

CeFEMA/IST, Portugal

CeFEM/

PEGASUS <u>P</u>lasma <u>E</u>nabled and <u>G</u>raphene <u>A</u>llowed <u>S</u>ynthesis of <u>U</u>nique nano<u>S</u>tructures

Thank you!!

PEGASUS is Horizon2020 FET-OPEN Grant Number: 766894

https://www.ipfn.tecnico.ulisboa.pt/PEGASUS/

Encontro Ciência '18 • 2nd – 4th July 2018 • Lisboa, Portugal

02/07/2018