Steady-State operation of Tokamaks: Key Physics and Technology Results on Tore-Supra

J Jacquinot on behalf of the Tore-Supra Team Cadarache, EU

Motivations
Tore Supra and operating conditions
Key results in technology and physics

Consequences for ITER

The way forward

Steady state issues

Systems:

- Cooling channels must be close to plasma: (e < 10 mm)
 - Joining methods, erosion

Surveillance of large area with fast response (< 1 s), hot spots..

→ IR cameras

 New requirements on diagnostics, fuelling and heating and CD systems (LHCD, ICRH, ECRH, NNBI)

New physics:

- V_{loop} ~ 0, no Ware pinch
- Slow interplay between particle/energy transports and current profile
 - Irreversible bifurcations → stable conditions require feedback

Active new area of research

- Presently: Tore Supra, TRIAM-1M, LHD, HT7...
- New devices: W7X, KSTAR, EAST, SST1 and ITER (all superconducting

Euratom (

TORE SUPRA 2004

- Toroidal Pumped Limiter; heat exhaust capability 15 MW (10 MWm⁻²)
- Vessel protection against thermal radiation and plasma contact
- 10 actively cooled neutralizers below the TPL; max. flux 15 MW/m²; total pumping speed 20 m³/s
- 30 Diagnostics (actively cooled also)

Euratom CC

Vloop = 0 for > 6 minutes injected energy of 1.1 GJ (Van Houtte, poster EX/P4-14)

Heat Exhaust

~ 50% on the TPL (7 m²)

25% on the first wall panels (75 m² with the bumpers)
25% shared between the outboard limiter and antennas
Beware of fast particles: ripple and later alphas!

Particle retention (Tsitrone, EX10-2)

Phase 1: Decreasing retention rate → filling carbon porosities

Phase 2: Constant retention rate : $2 \ 10^{20}$ D s⁻¹ (= 50% of injected flux) \rightarrow co-deposition observed but not enough (deep penetration in carbon?)

In vessel inventory : up to 8 10²² D for 6 mn (>> saturation of 15 m² of carbon)

Identical shot to shot behaviour. No saturation of in-vessel retention after 15 minutes of cumulated plasma time

Euratom CCC Pellet injection during 2 minutes in presence of LH

LH power notching allows penetration of 155 pellets Very stable speed of 0.5 km/s

Relevant for ITER:

- Reliable screw extruder
- Pneumatic acceleration does not require large pumping system (<15 mbar.l for 2mm pellets up to 800 m/s)

**** * * * *

Euratom (

Slow temperature oscillations

Poster EX/P6-16 Imbeaux et al.

Non linear interplay between transport and current profile at the onset of the core ITB
→ RT control of current profile required (for ex, ECCD)

Euratom CECI Evident synergy ECCD &LHCD at Vloop = 0 (Giruzzi et al EX/P4-22)

0.5 MW of LH power replaced by 0.7 MW of EC power to drive 80 kA

Synergy when LH and EC waves absorbed at same location

ρες

IEC

0.35

Promissing for NTM control using ECCD in ITER

Euratom CC

Combined LHCD & ICRH

Achieving 10 MW / 10s pulses
Exhibit good L-mode, H_L up to 1.7, when optimzing H minority concentration (n_D/n_e ~6%):

Spontaneous toroidal co-rotation ITG & TEM stabilized by E×B shear (r/a <0.6)

No central source; $V_{neo} \sim 10^{-3}$ m/s cannot explain peaked n_e profile

Euratom

G.T. Hoang, Phys. Rev. Lett. 90 (2003)

Turbulent pinch coefficients

∇q/q term dominates, consistent with **TEM** driven transport simulations *G.T. Hoang, Phys. Rev. Lett.* 93 (2004) *X. Garbet, Phys. Rev. Lett.* 91 (2003)

J. Jacquinot, 20th IAEA Fusion Energy Conference, Vilamoura, Portugal, 1/11/2004

Euratom CC

Euratom

Extrapolation to ITER

Tore Supra: n ~ 1/q^{0.5} As found by Boucher, Rebut, Watkins for JET

TEMs expected in ITER as in Tore Supra (similar effective collisionality related to detrapping of electrons)

→ Peaked n_e → Fusion Power increased to 530 MW instead of 400 MW with a flat n_e profile(ref. scenario)

Euratom CC

Progress in Long Pulse Operation

*^{**}* * * *_{*}*

Tore Supra ongoing upgrades

LHCD system

Euratom CCC

700kW, 1000s, 3.7GHz Klystrons

400kW, 600s, gyrotrons

Passive Active Module (PAM) ICRH antenna with conjugate matching

Conclusions

- Routine SS operation with superconducting coils, RF heating and thin walled PFC's
 - Coping with detailed in-vessel power deposition is tough!
 - Slow non-linear oscillations/bifurcations
 - Unexplained long lasting in-vessel retention of D (low density regime)
 - Turbulent particle pinch documented A gift from mother nature to ITER ?
- Exciting scientific developments in Cadarache in preparation of ITER

- G.T. Hoang, EX8-2 Turbulent Particle Transport in Tore Supra Fri.
- E. Tsitrone, EX10-1 Deuterium retention in Tore Supra long discharges Sat.
- D. van Houtte, **EX/P4-14** *Real Time Control of Fully Non-Inductive 6 minute, 1 Gigajoule Plasma Discharges in Tore Supra* Thurs.
- G. Giruzzi, EX/P4-22 Synergy between EC and LH Current Drive on Tore Supra Thurs.
- F. Imbeaux, EX/P6-16 Non-linear electron temperature oscillations on Tore Supra: experimental observations and modelling by the CRONOS code Fri.
- R. Sabot EX/P6-25 Measurements of density profiles and density fluctuations in Tore Supra with refclectometry Fri.
- T. Loarer EX/P5-22 Overview of gas balance in Plasma Fusion devices Fri.
- G. Martin, EX/10-6Rc Disruption&Mitigration in Tore Supra Sat.
- Ph. Ghendrih, TH 1-3 Relaxation & Transport in Fusion Plasmas Thurs.
- Y. Sarazin, TH/P6-7 Interplay between density profile and zonal flows in drift kinetic simulations of slab ITG turbulent Fri. & Sat
- Ph. Ghendrih, TH/1-3Ra Scaling Intermittent Cross-Field Particle Flux to ITER Thurs.
- S. Benkadda, TH/1-3Rb Nonlinear Dynamics of Transport Barrier Relaxations in Fusion Plasmas Thurs.
- M. Bécoulet, TH/1- 3Rc Non-linear Heat Transport Modelling with Edge Localized Modes and Plasma Edge Control in Tokamaks Thurs.
- G. Falchetto, TH/1-3Rd Impact of Zonal Flows on Turbulent Transport in Tokamaks Thurs.
 J. Jacquinot, 20th IAEA Fusion Energy Conference, Vilamoura, Portugal, 1/11/2004