Accelerator Technology and Power Plant Design for Fast Ignition Heavy Ion Fusion Energy

Boris Sharkov (ITEP-Moscow)

M.Basko,M.Churazov,, D.Koshkarev, S.Medin, Yu.Orlov, Parshikov A. N., Suslin V.M.

ITEP-Moscow IHED RAS Keldysh IAM RAS

20th IAEA FEC Villamoura 2004

Outline

- Basic principles
- Target for FI IFE
- Energy release partition
- HI Accelerator Driver
- Reactor Chamber
- Chamber Wall Response
- Power Plant
- ITEP-TWAC facility
- Conclusions

Driver efficiency ≥ 25% High repetition rate ~ 1-10 Hz High reliability based on developed accelerator technologies

Principal motivation for cylindrical targets *M.Basko et al., HIF 2002*

Near-relativistic heavy ions with energies \geq 0.5 become an interesting alternative driver option for heavy ion inertial fusion (D.G. Koshkarev).

Bi ions with energies 100-200 GeV have relatively long ranges of ~7-18 g/cm² in cold heavy metals. Such ranges can be naturally accommodated in cylindrical targets with axial beam propagation.

Direct drive may become a competitive target option when

- azimuthal symmetry is ensured by fast beam rotation around the target axis,
- axial uniformity is controlled by discarding the Bragg peak, and (possibly) by two-sided beam irradiation,
- a heavy-metal shell (liner) is used to compress the DT fuel.

Fast ignition with heavy ions: assembled configuration *M.Basko et al., HIF 2002*

With a heavy ion energy $\geq 0.5 \text{ GeV/u}$, we are compelled to use cylindrical targets because of relatively long ($\geq 6 \text{ g/cm}^2$) ranges of such ions in matter.

The ion pulse duration of 200 ps is still about a factor 4 longer than the envisioned laser ignitor pulse. For compensation, it is proposed to use a massive tamper of heavy metal around the compressed fuel:

Assembled configuration

Ignition and burn propagation

Fuel parameters in the assembled state: $\rho_{DT} = 100 \text{ g/cc}, R_{DT} = 50 \text{ }\mu\text{m}, (\rho R)_{DT} = 0.5 \text{ g/cm}^2.$

2-D hydro simulations (ITEP + VNIIEF) have demonstrated that the above fuel configuration is ignited by the proposed ion pulse, and the burn wave does propagate along the DT cylinder!

Cylindrical FIHIF Target

Density distribution in compressed cylindrical target for FIHIF (t=30ns) M.Churazov 2004, 2D hydro

The Third IAEA TM 11-13.10.04, Daejon, Korea

FIHIF Driver Scheme

Slide № 2 Medin S.A. et al

Beam parameters of HIF driver for fast ignition fusion						
Station nu mb er	lon energ y (GeV)	RF frequen cy (MHz)	Bunch current (A)	Momentum spread (x10 ⁴)	Emittance (μm)	β=v/c
1	10-4		0.04	±300	0.3	0.001
2	10 ⁻³	6.25	0.16	±180	0.9	0.003
3	10 ⁻²	12.5	0.4	±36	0.9	0.010
4	0.1	50	1	±37	0.9	0.033
5	0.2	200	4	±75	0.95	0.047
6	100	1000	230	± 2	1	0.745
7	100	Single bunch	20000	± 30	1	0.745
8	100	Single bunch	1600	± 20	1	0.745

HIGH POWER HEAVY ION DRIVER

lons		$Pt_{192,194,196,198}^{+,-}$
lon energy	(GeV)	100
	Compression bea	m
Energy	(MJ)	7.1 (profiled)
Duration	(ns)	75
Maximum current	(kA)	1.6
Rotation frequency	(GHz)	1
Rotation radius	(mm)	2
	Ignition beam	
Energy	(MJ)	0.4
Duration	(ns)	0.2
Maximum current	(kA)	20
Focal spot radius	(μ m)	50

Main linac length	(km)	10
Repetition rate	(Hz)	2x4 (reactor)
Driver efficiency		0.25

Ground plan outline for FIHIF power plant

REACTOR CHAMBER FOR FIHIF POWER PLANT

REACTOR CHAMBER CHARACTERISTICS

Fusion energy per shot	(MJ)	750
Repetition rate	(Hz)	2
Li/Pb atom density	(cm ⁻³)	10 ¹²
Coolant temperature	(°C)	550
Explosion cavity diameter	(m)	8
Number of beam penetrations		2
First wall material		SiC (porous)
Coolant tubes material		V-4Cr-4Ti
Blanket energy multiplication		1.1

Slide № 12 Medin S.A. et al

CYLINDRICAL TARGET

(g)	0.006				
(g)	4.44				
(mm)	~8.0				
(g/cm²)	0.5				
	0.39				
	100				
(MJ)	750				
Energy release partition					
(MJ)	17				
(MJ)	153				
(MJ)	580				
	(g) (g) (mm) (g/cm ²) (MJ) Energy release par (MJ) (MJ)				

Temporal profiles of X-radiation characteristics for FIHIF cylindrical target

Shock wave profiles generated by X-ray radiation in liquid film at the first wall

Pressure distribution in liquid film at different times

Slide № 13 Medin S.A. et al

Temperature profile in liquid protecting layer of the first wall

Vaporization rate of liquid film on the first wall

Temporal evolution of the evaporated mass

Slide № 15 Medin S.A. et al

Evaporation-condensation dynamics

FIHIF target neutron pulse

Pressure distribution in FIHIF blanket at different times

FIHIF Blanket Structure and Neutron Energy Deposition

Material of blanket zones	R, cm	∆R, cm	ρ, g/cm³	M, 10 ³ kg	Q/V, MJ/m ³	Q, MJ	ΔТ, К
blanket zones 1. PbLi 2. PbLi 3. SiC/PbLi 4. PbLi 5. V/4Cr/4Ti 6. PbLi 7. V/4Cr/4Ti 8. PbLi 9. V/4Cr/4Ti 10. PbLi 11. V/4Cr/4Ti	400,0 400,0 400,2 401,0 407,0 407,4 413,4 413,4 413,8 419,8 420,2 426,2	400 0,2 0,8 6,0 0,4 6,0 0,4 6,0 0,4 6,0 0,4 6,0 0,4	g/cm ³ 3,4·10 ⁻¹⁰ 9,0 5,7 9,0 5,9 9,0 5,9 9,0 5,9 9,0 5,9 9,0 5,9 9,0 5,9	10 ³ kg 10 ⁻⁷ 3,3 9,3 110,8 4,9 113,6 5,0 116,1 5,1 119,7 5,2	MJ/m ³ 5.10 ⁻⁹ 23,8 20,7 18,5 8,9 12,2 6,1 6,5 2,8 4,1 1,1	1,3·10 ⁻⁶ 8,8 33,7 237,7 7,4 164,0 5,2 88,8 2,4 55,5 0,9	66,6 13,0 5,1 11,1 2,8 7,3 1,7 4,0 0,9 2,0 0,5 2,0
12. PbLi 13. V/4Cr/4Ti 14. PbLi 15. V/4Cr/4Ti 16. PbLi 17. V/4Cr/4Ti 18. HT-9 19. Concrete	426,6 432,6 433,0 439,0 439,4 445,4 446,4 452,0	6,0 0,4 6,0 0,4 6,0 1,0 6,0 400	9,0 5,9 9,0 5,9 9,0 5,9 7,9 2,0	123,7 5,4 128,8 5,6 133,0 14,5 112,2 -	1,5 0,8 0,9 0,2 0,3 0,1 0,07 -	23,6 0,7 13,3 0,2 4,4 0,2 1,0 Total: 647,8	0,9 0,2 0,4 0,1 0,2 0,05 0,01

The Third IAEA TM 11-13.10.04, Daejon, Korea Pressure distribution in FIHIF blanket at different times

Slide № 19 Medin S.A. et al

The Third IAEA TM 11-13.10.04, Daejon, Korea

Pressure, Temperature and Radial stress temporal evolution in FIHIF blanket

Slide № 20 Medin S.A. et al

Determination of material state in blanket design under neutron pulse impact

Temporal variation of equivalent stress $\sigma_{eq} = (3J_2/2)^{1/2}$ normalized by yield stress Y (Y= 35 MPa for SiC/PbLi and 280 MPa for V-Cr-Ti).

The von Mises criterion $\sigma_{\rm eq}$ / Y \leq 1 determines elastic/plastic material behaviour.

Thermal schematic of FIHIF power plant

• The reactor chamber with a wetted first wall has a minimum number of ports for beam injection.

• A massive target significantly softens the X-ray pulse resulting from the microexplosion.

• A two-chamber reactor vessel mitigates the condensation problem and partly reduces the vapor pressure loading.

• Three loops in the energy conversion system make it easier to optimize the plant efficiency and to develop the thermal equipment.

ENERGY CONVERSION SYSTEM

Primary coolant loop Li ₁₇ Pb ₈₃			
Max./min. temperature	(°C)		550/350
Mass flow rate	(ton/s)		13.1
Pump power	(MW)		11.6
	Inte	rmediate coolant loop Na	
Max./min. temperature	(°C)		500/300
Mass flow rate	(ton/s)		6.40
Pump power	(MW)		3.77
		Steam cycle	
Steam parameters (MPa	/ºC/ºC)		18/470/470
Net efficiency			0.417
Power plant parameters			
Net power (per 1 chamber)	(MW)		670
Net efficiency			0.373
Slide № 23 Medin S.A. et al			

ITEP-TWAC project in progress

Non-Liouvillian stacking process

Процесс накопления ядер С 6+

ВЧ группировка пучка

lon accumulation C⁶⁺ in U-10 (213 MeV/u)

Линейный рост интенсивности ~ 100 с (> 30 циклов)

Снижение темпа накопление

Максимальная интенсивность

Accelerator Technology Issues

• High current injection,

•

•

- Accumulation / stacking
- Bunch compression,
- IBS and vacuum instability
 - Fast extraction
 - **Beam transport and focusing**
 - Generation of hollow beams -"wobbler"

Development of Diagnostic Methods

CONCLUSIONS:

- a power plant concept for fast ignition HIF is formulated, which is consistent with the newly proposed driver-target-chamber design.

- ITEP-TWAC facility is suitable for accelerator technology developments:

Positive features :

• A massive target significantly softens the X-ray pulse resulting from the microexplosion.

• The reactor chamber with a wetted first wall has a minimum number of ports for beam injection.

• A two-chamber reactor vessel mitigates the condensation problem and partly reduces the vapor pressure loading.

• Three loops in the energy conversion system make it easier to optimize the plant efficiency and to develop the thermal equipment.

Problems of concern:

driver length,

target positioning in flight,

the of vapor fog problem in the chamber, pressure-stress pulsations in the blanket.

Experiments in frame of IAEA CRP

