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TJ-II vs ISS95 scaling

•Previous experiments in all-metal wall conditions
are consistent with ISS95 predictions.

•Plasma discharges , produced in boronised wall
conditions, yield different dependences on
rotational transform and on plasma density.

•The possible physical origins: impact of improved
confinement regimes as well as plasma-wall
interaction on TJ-II global confinement.
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Triggering of e-ITB in stellarator: role of rationals
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F.Castejón et al., IAEA-2004 (EX/8-1)

Great flexibility of
stellarator devices in
magnetic configuration
(3/2, 4/2, 8/5,…)

•The rational 3/2 has to be positioned inside the
plasma for the  e-ITB to appear.

•Is the presence of rational surfaces in the plasma
essential to e-ITB formation or does it simply
modify the power threshold?

before & during e-ITBbefore & during e-ITB
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Why do rationals trigger ITBs?

Due to a rarefaction of resonant
surfaces in the proximity of low order
rationals which is expected to decrease
turbulent transport.
Romanelli PoP- 1993 / L. Cardozo 1997 / Brakel 2002 /
Garbet 2001

Due to the triggering of ExB
sheared flows in the
proximity of rationals
Hidalgo PPCF-2000 / Pedrosa 2000/
Carreras 2001/ Ochando 2001 / Ida 2002
/Shaing 2003/ Estrada 2004 / Castejón 2004:

•kinetic effect.

•Viscosity

•Neoclassical effects

•Turbulence driven flows

TJ-II

experiments
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Biasing induced H-mode like transition in TJ-II

•Modification of edge radial electric fields by limiter biasing.
•Improvement in particle confinement time and reduction of turbulence
•No significant impurity influx.
•Bursty behaviour in Hαααα
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Sheared flow development and threshold plasma density

•The development of the naturally occurring
velocity shear layer requires a minimum plasma
density.

•There is a coupling between the onset of sheared
flow development and the level of turbulence.

•This mechanism can explain spontaneous improved
confinement in TJ-II
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Effects of Plasma Current: magnetic shear

•TJ-II plasmas confinement under transformer
induction conditions responds to plasma current.

•Plasma density: decreases/increases smoothly for
values of positive/negative plasma current

•These observations show the link between magnetic
configuration (magnetic shear) and  transport.

D. López Bruna et al., Nuclear Fusion (2004)

J. Romero et al., Nuclear Fusion 43 (2003) 386
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Inpurity transport studies

Influence of density / collisionality:

Impurity confinement time (τ) slowly increases with density / collisionality up to a value
where it increases more rapidly. The threshold density / collisionality  increases with iota.

Influence heating power:

Confinement time shows a strong dependence with ECRH heating power (τ ≈ P-3) which
turns out to be stronger than the one observed in the global energy confinement time (P-0.5).

Zurro B. et al., IAEA-2004 (EX/P6-32)
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Particle transport and perturbative experiments
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•Particle diffusivities are about 0.3 m2/s (r ≈ 0.6),
increasing radially outwards. An inward pinch is
necessary to explain bulk particle transport.(S.
Eguilor et al., 2004)

•However, evidence of non-diffusive transport
mechanisms has been observed during the
propagation of edge cooling pulses experiments.
(B. van Milligen et al., Nuclear Fusion 2002)

•A model has been developed, incorporating a
critical gradient mechanism that separates a sub-
critical diffusive and a super-critical anomalous
transport channel, depending on the local value
of the gradient.
(B. Van Milligen et al., IAEA-2004 (TH/P6-10)
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•The positive values of the radial electric field (
50 V/cm) measured by the HIBP system at low
density plasmas are of the order of the
neoclassical estimations
Krupnik et al., EPS-2004.

•Coupling between ECRH input power density,
plasma potential and the energy of the
suprathermal electron tail.

F.Medina el et EPS-2004.

•An approach based on Langevin equations has
been recently introduced to estimate this ECH
induced flux.

F. Castejón et al., PPCF 2003 /

IAEA (2004) EX/8-1

Electric fields: neoclassical and kinetic effects
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Ion energy confinement and electric fields
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•The ion power balance equation shows
different confinement regimes
characterized by different ion energy
confinement times.

•Results are compatible with changes in
the ambipolar electric field computed
from neoclassical calculations.

R. Balbín et al., 2004
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Radial profiles of plasma potential and flows show
evidence of “structures” in configurations with low
order rationals.
M.A. Pedrosa et al., PPCF-2004
L. Krupnik et al., EPS-2003

Plasma potential, flows and rational surfaces
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Magnetic topology: momentum re-distribution via
turbulence

Experiments carried out in the plasma boundary of TJ-II stellarator and JET

tokamak  have shown the existence of significant gradients in the cross-correlation
between parallel and perpendicular flows near the LCFS.
(B. Gonçalves et al., IAEA-2004)

Energy transfer:
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• Enhanced screening of
injected impurities in edge
island configurations takes
place.

• These results indicate that
configurations with rational
numbers that give rise to island
chains at the edge are good
candidates for application as
divertor-type plasmas in TJ-II.
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NBI plasmas: profile evolution

•The electron and density profiles show a
gradual evolution from the hollow shape
typical of ECH plasmas (on-axis) to bell-
shaped profiles at the NBI phase (400 kW).

•Measurements of plasma potential show the
evolution of the electric field from positive at
ECH plasmas to near sign reversal at the
NBI regime.
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NBI plasmas:confinement and fluctuations

Combined ECRH and NBI
experiments reveal that, once
ECRH heating power is switched-
off, a confinement regime
characterized by:

•a strong reduction in ExB
turbulent transport

•significant increase in the ratio
between density (n) and particle
transport (Hαααα) is achieved.
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Final Conclusions

• Global confinement studies have revealed a positive dependence of energy
confinement on the rotational transform and plasma density.

• Spontaneous and biasing-induced improved confinement transitions, with
some characteristics that resemble those of previously reported H-mode
regimes in other stellarator devices, have been observed.

• Magnetic configuration scan experiments have highlighted the interplay
between magnetic topology, transport and electric fields.

• Experiments configurations with a low order rational located in the
proximity of the LCFS have shown the impurity screening properties
related to the expected divertor effect.

• The evolution of transport and turbulence at the transition from ECRH to
NBI plasmas plasmas points in the direction of an improved particle
confinement regime.


