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1. PWI effects on 
Steady State Tokamak Operation

Sakamoto M.     EX/P5-30 
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SSTO   in TRIAM-1M
5 hour 16 min discharge was 
achieved by localizing PWI on 
a movable rail limiter ML and 
by reducing surface 
temperatures on PFCs.
Under such conditions, 
toroidal distribution of heat 
load and recycling flux on 
PFCs are measured.
In connection with wall 
pumping rate, in situ 
measurement of ΓMo

dep is 
carried out.
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Toroidal structures of <q> and ΓH
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<q> and ΓH are localized 
on the ML

34 % of total heat load 
is deposited on ML and 
the rest are distributed 
among PFCs.
<q> on ML is higher 
than others by 2~3 
orders of magnitude.

40 % of total recycling 
particle rate is also 
localized on ML.
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Metal deposition
Three measurements in connection 

with dust deposition on different 
PFCs.

1) in situ ΓMo
dep from  optical 

transmission method
(DPs : CX sputtering)

Zushi, 31st EPS 2004
2) Ex situ thickness and H  retention

measurement
(PLs ; SOL deposition

Miyamoto, 16th PSI 2004)
3) Dynamics of main PWI surface

(ML)
IR spectrum, Visible, CCD, fast 
camera , IRTV

=> Tdust & coverage area
( Reicle R, JNM 2001)
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Ultra Low Frequency Events
Very low frequency semi-
regular oscillations are found 
in signals on heat loads, 
particle recycling, and 
impurity influx and contents.

Frequency ~ 1-2 10-3 Hz
amplitude ~a few %– 100 %

During the last ULF event, the 
five hour discharge terminated.
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Negative aspects of ULF events

ULF event  lasts for > 300 s;
consists of “Slow rise (decrease) 
and rapid recovery phases”

Plasma – rf coupling increases, 
but current drive efficiency ηCD
decreases during ULF events

Impurity accumulation causes to 
reduce drive efficiency.

SSTO is perturbed at every 1000 s 
by PWI driven ULF events.
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and rapid recovery phases”
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but current drive efficiency ηCD
decreases during ULF events

Impurity accumulation causes to 
reduce drive efficiency.

SSTO is perturbed at every 1000 s 
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Heat load/ recycling profile 
during ULF events
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Difference between 
heat load and 
recycling on ML

∆P variation is quite 
localized on the ML.

However, ∆Hα is not 
so localized.
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Perturbations & Termination
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2. ITB formation
/sustainment
/collapse

in SSTO

Hanada K.    EX/P4-25 
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Ion ITB near the lower edge of the 
power hysteresis window

Hysteresis window is observed 
even at dP/dt ~ 100W/10ms 
Pth(L=>ECD) > Pth(ECD=>L)
<τ>ion=1.5<n>Ti(0)/Prf*Vp

is used as a monitor of ion 
confinement property.
ITB is found near the edge . 
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ITB at the metastable

0.2

0.3

0.4

0.5

0.6

0.7

80 100 120 140 160 180

990709(70986-989)
70989(Ramp up)
70986(Ramp down)

η
C

D
(1

019
A

m
-2

/W
)

Power (kW)

0.2

0.3

0.4

0.5

0.6

0.7

80 100 120 140 160 180

990709(70986-989)
70989(Ramp up)
70986(Ramp down)

η
C

D
(1

019
A

m
-2

/W
)

Power (kW)

0.2

0.3

0.4

0.5

0.6

0.7

80 100 120 140 160 180

990709(70986-989)
70989(Ramp up)
70986(Ramp down)

η
C

D
(1

019
A

m
-2

/W
)

Power (kW)Input power (kW)



20th IAEA/ RIAM Kyushu Univ. 13

Lifetime of ECD/ITB against reduced Power
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From comparison with a 
logarithmic power dependence,
barrier formation, sustainment, 
collapse seem to have different  
P –dependence.
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Sustainment & 
collapse of ITB 
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Combined ∆ΦLH 
(N||=1.8+N||>1.8) scenario is 
chosen to make a hollow jLH(r).

Self-organized slow sawtooth
oscillations appear as an obstacle.

The periods of the oscillation 
is comparable to τL/R. 

Fe influx increases, though Mo 
is constant.
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ITB dynamics during SSSO

m=0 type oscillations found on ne/SX signals before the 
crash, indicating radial oscillation of ITB foot.

At ~0.1 s before the crash, ITB foot shrinks rapidly and 
then ITB itself collapse.

m=0 type oscillations found on ne/SX signals before the 
crash, indicating radial oscillation of ITB foot.

At ~0.1 s before the crash, ITB foot shrinks rapidly and 
then ITB itself collapse.
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3. Off3. Off--axis CD by 1axis CD by 1stst XX--mode mode 
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Oblique X-mode ECCD
(coupled to energetic electrons)
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1) 100 kW 170 GHz
2) fce0/f~1, ne~0.8-1x1019m-3

3) Elliptically polarized X-mode
are injected into LH plasmas at
various angles.
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∆Ip increases with increasing 
N||, which is consistent with 
relativistic Doppler resonance.

∆HX behave similarly, 
suggesting the coupling with 
energetic electrons.
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N|| dependence of OX-ECCD
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The  relativistic Doppler 
resonance condition can be 
fulfilled and becomes wider 
with increasing N||, with the 
consequence that both ∆Ιp and 
∆HX increase above N|| = 0.2.
On the contrary O-mode
results show a week N|| 
dependence, suggesting 
thermal electron coupling.
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Off axis X-mode CD
∆εHX(r) = ε/neECCD – ε/neLHCD~ jtail(r)

Hollow εHX is consistent 
with the off-axis X-mode
ECCD scenario.

The peak of the hollow 
roughly corresponds to the 
resonance region.

The O-mode (N||=0.23)
shows a peaked profile, 
suggesting on-axis heating at 
f~fce0 resonance.
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Summary
Heat load/ particle recycling/ impurity deposition 
are studied in 5 hour discharge. ULF events are 
found and termination phase  are studied.

ITB formation is found by combined LH phasing 
scenario, transition probability between ECD and 
non-ECD, and ITB sustainment and collapse are 
studied in full current drive plasma.  

Fundamental OX-ECCD scenario is demonstrated 
in LHCD plasma using the steering antenna. 

Heat load/ particle recycling/ impurity deposition 
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found and termination phase  are studied.

ITB formation is found by combined LH phasing 
scenario, transition probability between ECD and 
non-ECD, and ITB sustainment and collapse are 
studied in full current drive plasma.  

Fundamental OX-ECCD scenario is demonstrated 
in LHCD plasma using the steering antenna. 


