

20th IAEA Fusion Energy Conference (2 Nov. 2004, Vilamoura) EX/1-3 (18min.)

Steady State High β_N Discharges and Real-Time Control of Current Profile in JT-60U

T. Suzuki 1), A. Isayama 1), Y. Sakamoto 1), S. Ide 1), T. Fujita 1),
H. Takenaga 1), T. C. Luce 2), M. R. Wade 3), T. Oikawa 1), O. Naito 1),
S. Sakata 1), M. Sueoka 1), H. Hosoyama 1), M. Seki 1), N. Umeda 1),
T. Ozeki 1), K. Kurihara 1), T. Fujii 1), T. Yamamoto 1) and the JT-60 Team 1)

1) Japan Atomic Energy Research Institute, Japan

- 2) General Atomics, USA
- 3) Oak Ridge National Laboratory, USA

Introduction

• Current profile is essential in stability of tokamak.

JT-60L

- ♦ j(r)change by j_{BS} or j_{CD} → appearance of instability steady j(r) w/o instability must be realized.
- appropriate current profile for higher β_N
- realization of controlled j(r).
- High β_N with steady j(r) has not been achieved at low ρ_i^* , ν_e^* regime close to ITER.

Outline of this talk

• High $\beta_N \sim 2.5$ with steady current profile at low ρ_i^* , v_e^* regime.

- $\rho_i^* \sim 6 \times 10^{-3} (3 \rho_i^*_{\text{ITER}}), v_e^* \sim 6 \times 10^{-2} (3 v_e^*_{\text{ITER}})$
- "long-pulse modification" in 2003
- Increase of quasi-steady β_N up to 3
 - avoiding NTM optimizing q(r)
- Real-time control of current profile for "controlled" steady high performance plasma.
 - real-time evaluation of $q(\rho)$ using MSE
 - CD location control by N_{//} control of LH waves

Evolution of current profile was found to dominate sustainable period at high β_N .

- NTM appeared after 6.5s (3.6 τ_R) of β_N =2.7 sustainment.
- Gradual relaxation of Ohmic field changed j(r).
- The sustained period of 6.5s is not enough for j(r) relaxation.
- Now, β_N=2.5 for 15.5s (9.5τ_R); current profile is in steady state.
 ⇒No NTM will appear later.

• $\tau_R = \mu_0 < \sigma_{NC} > a^2/12$; D.R.Mikkelsen Phys. Fluids B **1** (1989) 333.

Sustainment of $H_{89P}\beta_N/q_{95}^2>0.4$ for 15.5s, exceeding ITER standard scenario (Q=10)

• $\beta_N \sim 2.5$ sustained for 15.5s=9.5 τ_R in high β_p H-mode plasma

- $H_{89P}=2.3-1.9$, $H_{89P}\beta_N/q_{95}^2=0.5-0.4$, $q_{95}\sim3.4$, $f_{GW}\sim0.6-0.8$, $f_{BS}=0.39$
- Duration limited by heating capability, not instability (no NTM).

fine tuning of stored energy FB by P-NB.

Confinement degraded with n_e by enhanced recycling.

T. Nakano, et al. EX/10-3

β_N =3 was sustained for 6.2s (4.1 τ_R) at low q_{95} =2.2 weak shear plasma.

- Decrease of q₉₅ down to 2.2 stabilized NTM after t=5.1s, without NTM stabilization by EC waves.
- No sawtooth activity even at the low q_{95} .
- β_N =3 for 6.2s, 4.1 τ_R limited by heating capability (23-25MW).
- $\beta_N H_{89P} / q_{95}^2$ reached 0.75 at $n_e / n_{GW} \sim 0.6$.

Misalignment of rational surfaces to steep pressure gradient stabilizes the NTM.

Control of q=m/n location was essential in stabilizing NTM.

- ◆ decrease in q₉₅ ⇒ rational surfaces (m/n=3/2, 2/1) move outward (small ∇p).
- Decrease of β_p(L_q/L_p): a measure of bootstrap current destabilization term

⇒ q(r) control

Multi-channel MSE & N_{//} controlled LHCD are keys in real-time q(r) control.

- High accuracy real-time $q(\rho)$ using MSE within 10ms
 - applicable to wide plasma parameters
- Direct control of LHCD location by N_{//}
 - LH power is also controlled to fix LH driven current.

N_{//}

JT-60U

180

2.03

φ

q profile control (q(0)=1 \rightarrow 1.3) was demonstrated.

- $\Delta \phi$ was controlled.
- q(r) reached to the reference at t=13s, and was sustained for 3s.
 n_p=0.5x10¹⁹m⁻³

Summary

JT-60U 🗖

- High β_N =2.5 sustained for 15.5s (9.5 τ_R) with steady current profile in low ρ_i^* , v_e^* regime close to ITER.
 - Evolution of j(r) was found to dominate sustainable period of high β_N.

• Appropriate current profile raised sustainable β_N .

- β_N =3.0 was maintained for 6.2s(4.1 τ_R) at low q₉₅=2.2 regime.
- Misalignment of rational surfaces and steep pressure gradient stabilized NTM.
- Real-time control system of q(ρ) was developed using MSE and N_{//} control of LHCD.
 - Real-time calc. method of q(ρ) was developed. The result agrees with that by equilibrium calc.
 - Central q was raised to 1.3, and sustained for about 3s.