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Specificity of neutron fusion irradiation (1)

For the fusion neutron spectrum, different nuclear reactions with the
nucler of the surrounding materials are possible:

neutron < I MeV: (n, n) elastic and inelastic scattering
(n, y) capture

Primary knock-on atom energy up to about 40 keV.
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neutron > I MeV: Transmutation reactions come into play
(n, p), (n, d) (n, t) (n, He)... H, and He production

Primary knock-on atom energy up to several hundreds keV.



Specificity of neutron fusion irradiation (2)

Expected dose at the end of life of a reactor.

Fusion reactor first wall: 100 to 200 dpa (displacement per
atom) with a helium production of about 10 appm He/dpa

and 40 appm H/dpa.

Fission reactor vessel: 0.1 dpa without He.



The International Fusion Materials
Irradiation Facility (IFMIF)

An 1rradiation facility that reproduces as close as
possible the fusion neutron environment is necessary
to qualify and develop structural, functional, breeding,
magnet... materials.



I[FMIF requirements ...

... to be fulfilled 1 terms of the neutron spectrum
are mediated by:

1. He and H production rates as well as other
transmutation reaction rates.

2. The damage production function W(T), which
characterized the primary recoil energy
spectrum, has to mimic that of a fusion reactor.




Comparison of the neutron spectrum and the
darmage production function -W(T) - between
[FMIF and DEMO in its current design

A. Moslang et al. Comprehensive Design Report (2004)
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IFMIIF - Schematic layout

IFMIF is an accelerator based D-Li neutron source

Typical Reactions:  “Li(d,2n)’Be ®Li(d,n)’Be ®Li(n,T)*He
Deuterons: 32, 36, 40 MeV 2x 125 mA Beam footprint 5x20 cm?
High flux Medium flux Low flux
Liquid Li Jet (>20 dpa, 0.5 L) (20-1dpa,6L) (<1dpa,>8L)
Deuteron Accelerator Region > | Test Cell >

A. Moslang et al. 2000 Nucl. Fusion 40 6 19-627



IFMIF
Details of the target area and test cell

Overlapping Deuteron Beams
(Total Power: 250 mA @ 30 to 40 MeV)

Medium Fluence Module (1-20 dpa/yr)
Low Fluence Module (0.1-1 dpa/yr)

The high-flux test
module volume 1s

about 0.5 L.

Specimen Capsules

High Fluence Modules (>20 dpa/yr)
Target Area (5 cm x 20 cm)

Flowing Lithium Stream (2.4 cm Thick at Target)



Small specimen test techniques (SSTT)

+ Many small specimen techniques have been developed by
the fusion material research community. Needs are
mainly dictated by:

» Small volume i1rradiation facilities like IFMIF (but also
accelerators, fission reactors)

o A large variety of specimen geometries have been
developed. This includes either a scaling down of
standard test specimens or the development of new tests
for small specimens (punch tests with TEM discs).



Small specimen test techniques (SSTT)

+ Development of these specimens and techniques has led to
collateral advantages:

» Minimize temperature uncertainties and flux gradient effects
» Optimize us of limited amounts of materials

» Reduce dose during PIE

¢ Application of SSTT forces the community to solve the issues
related to transfer of the test data to structural integrity
assessment.



Example of SSTT specimens for IFMIF
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Irradiation effect on the tensile properties of
ternpered martensitic steels

1.75 dpa

0.28 dpa

F82H steel, T

e (%)

test

=T, =293K

14

Yield stress increase
Aoy(T- ®,dd/dt...)

1rr2

Uniform elongation
reduction

Ag, (T, ®,dd/dt...)

1’

resulting from the build-
up of irradiation induced
defects in the matrix (I-
loops, micro-voids and
precipitates).



Irradiation effect on the fracture properties of
ternpered martensitic steels
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Simplified roadmap to model fracture
toughness in the transition (brittle) region

Fracture testing

|

Critical applied stress intensity factor
K;c, versus temperature

K (MPam'?)
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Tensile testing

Constitutive behavior
o(e, de/dt, T)

FEA, c-¢ fields at crack tip

Critical condition
for cleavage, (*-A*) for K-
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Therefore the fracture properties are intrinsically related
to the plastic flow described by a constitutive law o(g)
usually determined by plain tensile test.

Thus we need to:

1. Establish the true stress - true strain relationship ofe)
over a significant plastic deformation range.

2. Understand the plastic flow with physically-based models
In order to...

3. ...gain Insight Into the micromechanisms controlling
fracture.



How to establish o(g) for irradiated materials?
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Owing to the low uniform elongation measured with
tensile tests after irradiation, this type of test 1s usually not
suitable to determine o(€) for irradiated material.



Non-standard small ball punch test
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Eurofer97 tested at room temperature

A 3 mm diameter disk 1s clamped between two dies and 1s deformed
by bending. The load-deflection L-A curve 1s recorded.



Finite elerent axisymmetric model

7Y

Model implemented in ABAQUS 6.4-1.
The ball and dies are rigid bodies.

The disk was modeled with 2000 axisymmetric linear
reduced integration elements (CAX4R).

A force 1s applied between the upper and the lower dies
during the deformation, this prevents the specimen from
slipping. Friction between these dies and the disk constrains
the latter in the same way as in the actual experimental
device.

The calculations were run by imposing the vertical
displacement of the ball.



On the determination of the o(g) relationship
frorm small ball punch test

: 2.
1. Experimental

o(e) relationship to be
determined. Make a reasonable
L(N) - D(mm) guess and use it as input for FE

/’ simulation
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Validation of the FE model for the
ternpered martensitic F82H-mod steel

Tensile test curve
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Equivalent plastic strain in the disk reaches about 0.6, so
the o(¢) relationship measured with tensile test had to be
extrapolated.

The non-saturating c(g) curve fits better the punch curve.

Search a calibration between the yield load P, and the yield
stress o »



a,, (MPa)
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Calibration between the yield stress o,
(tensile test) and yield load P, /t* (punch test)
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A universal empirical linear
relationship between o,, and P /t*
was found for a variety of bcc
materials with different
morphologies covering a wide range
of stresses.

Gy, MPa =375 P /t* (kN/mm?)



What irradiation induced changes in the o(g)
constitutive behavior can we expect to measure

True stress (MPa)

from punch tests?

o(e ) not irrad. without saturation
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behaviors. The corres?onding punch curves were
A1 12{38% between the averaged flow stress and

punch curve slope is proposed.



Investigation of the plastic flow properties
frorm small ball punch test
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Also 1n this case, an empirical
linear relationship between the
SPT curve slope and the
averaged flow stress was
found.

The strain-capacity  can
therefore be estimated form
the punch test.
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Specimen size effect on fracture toughness
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1. The smaller the specimens, the higher the measured fracture toughness.

2. Large scatter in the transition, statistical nature of cleavage.



Fracture

Much of the recent work addresses use of Master Curve-Shift (MC-AT) method for fracture
toughness. K(T) has a constant shape and is indexed at an absolute temperature T for K = 100 MPa
ml2.

Ksmall specimens (T) KMC(T) KII’I‘(T)

K, / ’
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K(T) = Kyo(T-[T,+ AT]) AT = AT, +AT, + AT, + AT,



Reconstruction of K(T) curve, local approach based on a
critical criterion o*-A* to trigger cleavage.
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Small specimens are used to develop micromechanics-based approach to fracture:
»  Constitutive equations for use in Finite Element calculations of crack tip stress/strain fields

»  Local fracture parameters -- e.g., critical stress (o) critical area (A*) descriptions of
cleavage fracture

These can in turn be used in combination with Finite Element Modeling (FEM) to estimate AT,
for various specimen/component sizes and geometries.



Drastic effect of the details of o(g) on the
critical K to reach the criterion ¢*-A*
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sumrary

The available irradiation volume of IFMIF makes the development and use
small specimen test techniques (SSTT) necessary.

It was shown that SSTT like:
1. the non-standard ball punch test,

2. fracture testing with sub-sized specimens that do not meet the
ASTM requirements

are pertinent to investigate the fundamental plastic flow and fracture
properties and are applicable to the design of defect tolerant fusion structures
if and only 1f

an appropriate approach based on physically-based models is used to
rationalize the experimental results.



Conclusion

The success in the search for fusion materials
depends on the existence of a suitable neutron
source - [FMIF - and on our ability to develop
predictive models of the irradiation environment
on the material properties.



