

Relaxation & Transport in Fusion Plasmas

O Large scale flows, fronts & zonal

Relaxation dynamics

O Scaling parameters & control

Global, flux driven, 2D & 3D fluid, non-linear simulations of plasma transport

Relaxation & Transport in Fusion Plasmas

Collision Frequency Effect on Turbulent Transport *Gloria Falchetto et al. poster TH/1-3Rd*

SOL scaling with density front propagation Philippe Ghendrih et al. poster TH/1-3Ra

Dynamics of Barrier Relaxation

Sadri Benkadda et al. poster TH/1-3Rb

ELM control with stochastic transport

Marina Bécoulet et al. poster TH/1-3Rc

Zonal Flow Enhancement at low v_{ii}

Global, fluid, non-linear 3D ITG turbulence // Landau damping flux driven F_{inj}

 v_{ii} damped zonal flows

→ radial transport

Electrostatic potential

weak damping of zonal flows

 → shearing = upshift of threshold ∇T_i
→ reduced transport

G. FalchettoTH/1-3Rd

Control parameters $F_{inj} \& v^*$

2004-11-03

Lower collisionality v* = reduced turbulent transport

Steady state simulation : \exists trend with F_{ini} / v^* Mean shearing rate

VT_i gradient increase

Similar v^* effect in SOL turbulent transport Zonal flows versus front propagation

G. FalchettoTH/1-3Rd

2004-11-03

2004-11-03

Front transport in SOL

Intermittency : Ballistic over-density transport

Analytical scaling L_{//}^{5/8}

Ph. Ghendrih TH/1-3Ra

Transport Barrier & Relaxations

3D turbulence Resistive ballooning barriers = shear ExB flow driven without zonal flows ≠ prey / predator

Relaxation events

(5,2)

mode

0

Electrostatic Mode at Barrier Location

Radial ballistic propagation inward & outward

S.Benkadda TH/1-3Rb

1**H**

250

0

-250

linear growth + shearing out à la Dupree

- $\tilde{p} \approx \tilde{p}_0 \exp(\gamma t + i \omega_E t)$ Linear growth Doppler effect
- shear $\omega_{\rm E} \approx \omega'_{\rm E} x$ collisional diffusion $D_{\rm coll}$

$$\langle \widetilde{\mathbf{p}} \rangle \approx \widetilde{\mathbf{p}}_0 \exp(\gamma t - t^3 / \tau_{\mathbf{p}}^3)$$

t³ shearing out : Dupree time $\tau_{\rm D} \approx 1 / (D_{\rm coll} \omega'_{\rm E}^2)^{1/3}$

S.Benkadda TH/1-3Rb

M. Bécoulet TH/1-3Rc

Modelling ELM activity

DIII-D:# 115467 1.6T/1.13MA q₉₅=3.8

Ballooning linear growth + 2D transport : SOL = sink

ELM : $\delta B_r / B \sim 10^{-2}$ (n=-10)

2004-11-03

EURATOM-CEA Controlled confinement degradation

Association

