

Control of the Resistive Wall Mode with Internal Coils in the DIII-D Tokamak (EX/3-1Ra)

Active Measurement of Resistive Wall Mode Stability in Rotating High Beta Plasmas (EX/3-1Rb)

> by M. Okabayashi

Presented at 20th IAEA Fusion Energy Conference Vilamoura, Portugal

November 1st - 6th, 2004

248-04/MRW//rs

CONTROL OF THE RESISTIVE WALL MODE WITH INTERNAL COILS IN THE DIII-D TOKAMAK

M. Okabayashi¹, J. Bialek,² A. Bondeson,⁺M.S. Chance¹, M.S. Chu,³ D.H. Edgell,⁴ A.M. Garofalo,² R. Hatcher,¹ Y. In,⁴ G.L. Jackson,³ R.J. Jayakumar,⁵ T.H. Jensen,⁺ O. Katsuro-Hopkins,² R.J. La Haye,³ Y.Q. Liu,⁶ G.A. Navratil,² H. Reimerdes,² J.T. Scoville,³ E.J. Strait,³ H. Takahashi¹, M. Takechi,⁷, A.D. Turnbu⁴, I.N. Bogat⁴, P. Goh⁴, J.S. Kirh, M.A. Makowski,⁵ J. Manickam,¹ and J. Menard¹

Princeton Plasma Physics Laboratory, Princeton, New Jersey, 08543-0451,USA
Columbia University, New York, New York, USA.
General Atomics, P.O. Box 85608, San Diego, California 92186-5608, USA.
Far-Tech, Inc., San Diego, California 92121, USA.
Lawrence Livermore National Laboratory, Livermore, California, USA.
Chalmers University of Technology, Goteborg, Sweden.
Japan Atomic Energy Research Institute, Ibaraki, Japan

+deceased

EX/3-1Rb

ACTIVE MEASUREMENT OF RESISTIVE WALL MODE STABILITY IN ROTATING HIGH BETA PLASMAS

H. Reimerdes,¹ J. Bialek,¹ M.S. Chance,² M.S. Chu,³ A.M. Garofalo,¹ P. Gohil,³ G.L. Jackson,³ R.J. Jayakumar,⁴ T.H. Jensen,⁺ R.J. La Haye,³ Y.Q. Liu,⁵ J.E. Menard,² G.A. Navratil,¹ M. Okabayashi,² J.T. Scoville,³ E.J. Strait,³ and H. Takahashi,²

¹ Columbia University, New York, New York, USA
² Princeton Plasma Physics Laboratory, Princeton, New Jersey, USA
³ General Atomics, San Diego, California, USA
⁴ Lawrence Livermore National Laboratory, Livermore, California, USA
⁵ Chalmers University of Technology, Göteborg, Sweden

+ deceased

20th IAEA Fusion Energy Conference, Vilamoura, Portugal 2004

EXTERNAL KINK CONTROL WITH RESISTIVE WALL

- Steady state advanced tokamak scenarios need wall stabilization of external kink modes
 - for operation at high beta with a high fraction of bootstrap current
- Finite-conductivity wall
 - Does not completely stabilize ideal kink mode,
 - Converts it to a slowly-growing Resistive Wall Mode (RWM)
- Two approaches to RWM stabilization
 - Passive: fast plasma rotation (EX/3-1Rb)
 - Active: magnetic feedback control (EX/3-1a)
- New Internal coils installed just after the last IAEA conference: Very productive for RWM physics studies and active control of RWMs
 - Active MHD spectroscopy with applied rotating field:

RWM stability physics

— Plasma rotation sustained by feedback-controlled error field correction:

Long duration high β plasmas

— Direct feedback control :

RWM stability at higher beta below critical rotation

NEW INTERNAL CONTROL COILS ARE AN EFFECTIVE TOOL FOR PURSUING STABILIZATION OF THE RWM

Inside vacuum vessel: Faster time response for feedback control
Closer to plasma, flexible magnetic field pattern: more efficient coupling

- 12 "picture-frame" coils
- Single-turn, water-cooled
- 7 kA max. rated current
- Protected by graphite tiles
- 10 gauss/kA on plasma surface

NEW INTERNAL CONTROL COILS ARE AN EFFECTIVE TOOL FOR PURSUING STABILIZATION OF THE RWM

• Inside vacuum vessel: Faster time response for feedback control Closer to plasma, flexible magnetic field pattern: more efficient coupling

- 12 "picture-frame" coils
- Single-turn, water-cooled
- 7 kA max. rated current
- Protected by graphite tiles
- 10 gauss/kA on plasma surface

FEEDBACK WITH I-COILS INCREASES STABLE PLASMA PRESSURE TO NEAR IDEAL-WALL LIMIT

FEEDBACK WITH I-COILS INCREASES STABLE PLASMA PRESSURE TO NEAR IDEAL-WALL LIMIT

• C-coil stabilizes Slowly growing RWMs

FEEDBACK WITH I-COILS INCREASES STABLE PLASMA PRESSURE TO NEAR IDEAL-WALL LIMIT

OBSERVED OPEN LOOP GROWTH RATES AGREE WITH VALEN PREDICTION

TWO DISTINCT STABILIZATION APPROACHES HAVE BEEN PROPOSED

Plasma Rotation

• **Required:** A few % of Alfven velocity

Magnetic Feedback

- **Required:** Practical power level
- System stability limits gain

WALL STABILIZATION WITH ROTATION ALLOWS HIGH BETA OPERATION

- Stable at $\beta_N \approx 6 \ell_i$ and β_T reaching to 6%
- Beta exceeds estimated no-wall limit for >1s (> 200 τ_w)

HOW MUCH PLASMA ROTATION IS REQUIRED TO STABILIZE THE n=1 RWM?

HOW MUCH PLASMA ROTATION IS REQUIRED TO STABILIZE THE n=1 RWM?

• Comparison with MARS calculation with experimental rotation profile

• MARS includes rotation and viscous dissipation

MHD SPECTROSCOPY PROBES THE RWM STABILITY WHILE THE PLASMA REMAINS STABLE

SAN DIEGO

SPECTRUM REVEALS GROWTH RATE AND MODE ROTATION FREQUENCY OF THE STABLE RWM

SAN DIEGO

SPECTRUM REVEALS GROWTH RATE AND MODE ROTATION FREQUENCY OF THE STABLE RWM

TWO DISTINCT STABILIZATION APPROACHES HAVE BEEN PROPOSED

Plasma Rotation Magnetic Feedback Required: A few % of Alfven velocity **Required:** Practical power level System stability limits gain 8.0 8.0 $\Omega = 0$ $\gamma \tau_w$ $\gamma \tau_w$ Increase Gain = 0 **Rotation Higher Gain** 0.0 0.0 **STABLE STABLE** -2.0 -2.0 Ideal-Wall Limit No-Wall Limit $\beta \Rightarrow$ No-Wall Limit Ideal-Wall $\beta \Rightarrow$ $\Omega_{\rm rot} > \Omega_{\rm crit}$ $\Omega_{\rm rot} < \Omega_{\rm crit}$

• Rational surface damping mechanism $-> \Omega$ at q=2 as a measure of rotations

DIRECT MAGNETIC FEEDBACK SUSTAINS BETA ABOVE NO-WALL LIMIT EVEN WHEN $\Omega_{rot} < \Omega_{crit}$

FEEDBACK SUSTAINS A DISCHARGE WITH NEAR-ZERO ROTATION AT ALL n=1 RATIONAL SURFACES

Comparison case without feedback is unstable even with lower beta and faster rotation 30 Rotation Frequency (kHz) 114340 114336 Ideal-Wall Limit Feedback β_{N}/ℓ_{i} 3-No-Wall Limit 20 (approx.) 2 114340 114336 **1500 ms** 10 **No-Feedback** 1390 ms frot (kHz) at ρ **= 0.6** 9 0 3 5 **150** δB_{p} (Gauss) 4 **q(**ρ) 3 0 2 1000 1600 1200 1400 Time (ms) Feedback 0 1.0 0.0 ρ tabilized Rotation

FEEDBACK WITH I-COILS HAS ACHIEVED HIGH $\beta_{\mbox{n}}$ At rotation below critical predicted by mars

FEEDBACK WITH I-COILS HAS ACHIEVED HIGH $\beta_{\mbox{n}}$ AT ROTATION BELOW CRITICAL PREDICTED BY MARS

• With near zero Rotation, C_{β} is near the maximum set by control system characteristics

FEEDBACK WITH I-COILS HAS ACHIEVED HIGH $\beta_{\mbox{n}}$ AT ROTATION BELOW CRITICAL PREDICTED BY MARS

- With near zero Rotation, \textbf{C}_{β} is near the maximum set by control system characteristics
- Feedback with I-coils attained C_{β} higher than with C-coils

RWM FEEDBACK ASSISTS IN EXTENDING $~\beta_{n}\approx 4$ advanced tokamak discharge more than 1 second

MARS ANALYSIS PREDICTS THAT STABLE FEEDBACK GAIN RANGE IS NARROW

• With experimental profiles and present hardware

• Stable mode becomes unstable with higher gain due to finite feedback time response

MARS ANALYSIS PREDICTS THAT STABLE FEEDBACK GAIN RANGE IS NARROW

High-bandwidth audio amplifiers are being installed to increase the range of stable operation

OVERALL SUMMARY

• Active MHD Spectroscopy has been developed to investigate RWM stability (EX/3-1Rb)

- Detailed comparison of experiments with damping models is now possible
- Sound wave and kinetic damping model results are comparable to experimental values
- Further improvement of models is needed for a quantitative comparison
- Direct magnetic feedback with I-coils has been demonstrated as an essential tool for achieving high β plasmas (EX/3-1Ra)
 - Internal Coils are more effective and efficient than External Coils
 - High β_n close to the ideal-wall limit has been achieved with $\Omega_{rot} < \Omega_{crit}$
 - Feedback has assisted in sustaining advanced tokamak discharges with $\ \beta_{n} \approx 4$ for over 1 second
- Future work
 - High-bandwidth Audio-amplifiers to increase the range of stable operation
 - Counter Neutral Beam Injection for greater control of plasma rotation assessing the rotational stabilization

