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CHALMERS Introduction

e Advanced tokamaks have good transport properties but low [3 limits, 3y =
B/l1,/(aBo)] X 2.

e By > 3 can be achieved by wall stabilization, but finite wall conductivity
gives rise to unstable resistive wall modes (RWM). Steady state advanced
scenarios in ITER require RWM stabilization.

e RWM can be stabilized by plasma rotation in present tokamaks (DIII-D,
JET), but rotational stabilization may not be robust for ITER.

e For ITER prediction, it is important to understand damping physics of
RWM in rotating plasmas: comparison with experiments on critical rota-
tion and on resonant field amplification (RFA).

e Active feedback control opens another possibility for stabilizing (n=1) RWM,
thus allows pressure increase up to 40% in ITER advanced scenario.
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CHALMERS

e Stabilization of RWM by toroidal plasma rotation

— Damping models
— Benchmark I: Critical plasma rotation
— Benchmark lI: Resonant field amplification (RFA)

— Predictions for ITER
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CHALMERS Damping models

e Alfvén continuum damping (MHD)
[0y [ o — 8o jmax
|0 [Weo — Bcc jTE0Y

VYT = (cylinder)
e lon Landau damping, modeled in MARS-F as

— parallel sound wave damping (with free parameter x)

Fuise = =X |kj|vin,ipV)

— semi-kinetic damping (Bondeson&Chu PoP96)
1 o =
JIm(AWe +AWr) = —— | Fys- €1 dx

e Both critical rotation and RFA experiments offer good benchmark for damp-
ing models
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CHALMERS Benchmark I: critical rotation

e Critical rotation = minimal rotation frequency required for complete stabilization of RWM

e Usually normalized by Alfvén frequency at plasma center
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e Parallel sound wave damping has difficulty to model both JET and DIlI-D
e Semi-kinetic damping seems reasonable

e Why critical rotation in JET is 2-4 times lower than in DIlI-D?
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CHALMERS Benchmark I: critical rotation (cont.)
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e Points are MARS-F predictions, not experimental data

e Theory (Bondeson&Chu, PoP96) predicts ®

C

r(r)t o< 1/q2

e Rotational stabilization of RWM seems in favor of low-aspect-ratio (high-g)

e Difference between JET and DIII-D in equilibria profiles and plasma-wall

shapes also change critical rotation
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CHALMERS Benchmark ll: resonant field amplification
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e RFA in JET: use internal/external saddle coils
e Excitation currents: DC(static error field) vs. AC(standing waves)
e Comparison: RFA amplitude with DC pulses and internal saddles

e MARS-F: both kinetic damping and strong sound wave damping (k; = 1.5) reproduce
experimental behavior

More results in EX/P2-22 by T.C. Hender et al.
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Benchmark Il: RFA (cont.)

CHALMERS
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e Standing waves by internal saddle coils, semi-kinetic damping in modeling

e MARS-F results match well with experiments for vacuum shots in both

amplitude and phase shift

e Reasonable match for plasma responses in both amplitude and phase

e Also obtained reasonable agreement for external saddles
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CHALMERS Benchmark Il: RFA (cont.)
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e Transfer function (for traveling waves) P(jo.) = ¥ (®.)/¥(®. = 0|vacuum) describes
completely plasma response

e With internal saddles, plasma significantly modifies vacuum response

_ 1.008 + j0.535 n 0.045 + j0.031
Jjo.+0.884 — j0.281 Jjo.+0.176

P(jo)

e The 1st pole of P shows that internal saddle coils indeed excite RWM that is stabilized by
strong plasma rotation
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CHALMERS

Predictions for ITER

e ITER steady state Scenario-4 with weak negative magnetic shear and highly shaped plasma

e Total plasma current = 9MA, fusion power production = 340MW at O =5
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RWM growth rate vs toroidal rotation frequency.
Critical rotation frequency about 1.5-3%®, at
plasma center. ASTRA prediction: < 2%.
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CHALMERS

e Feedback stabilization of RWM

— Choice of feedback logic
— Choice of sensors
— Choice of feedback coils

— Control optimization for ITER
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CHALMERS Choice of feedback logic

ref.

RW

Rf
¢ Voltage-to-voltage control: V; = — KV
dyy Ly dy
V=1 V.=
I e Y M dt
e Plasma dynamics determined by P, — M“’—M, P, = % — frequency dependent transfer

functions, computed by MARS-F

¢ )\ = fraction of poloidal width subtended by active coil
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CHALMERS Choice of sensors
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e One can consider various sensors: radial, internal/external poloidal, compensated radial,
their combinations

e Cylindrical theory — internal poloidal sensors the best
e Main reason: less coupling to feedback coils, better coupling to plasma

e Toroidal calculations —> internal poloidal sensors allow robust control against variations
of feedback coil geometry, as well as global plasma parameters
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CHALMERS Choice of feedback coils
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e Present ITER design uses Side Correction Coils (superconducting, external to the ITER
walls) for n = 1 RWM feedback control

e Nyquist diagram for open loop K(j®)P;(j®) shows stability and (partly) performance of
closed loop: Stability < Nyquist curve encircles -1 once counterclock-wise

e External coils allow stabilization for Cj < 60%, using large enough proportional gains

e Internal coils (just inside first wall) allow stabilization of RWM for plasmas close to ideal
wall limit, using large enough proportional gains
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CHALMERS Control optimization for ITER
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e For ITER: voltage-to-voltage control, internal poloidal sensors, Side Correction Coils, PID
controllers, controls turn on at sensor field > 1.5mT

e With good(loose) control performance, RWM can be stabilized up to Cz = 60%(80%)
within voltage limit of 300V/turn

e Optimally compensated sensor signals = (3 > 80% and good performance reachable

e Assumed ideal amplifier, neglected: 3D effect of ITER walls, sensitivity to model distur-
bances, superconducting coils ac losses
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CHALMERS Conclusions

e Toroidal ideal-MHD model is close to correct for modeling RWM, and ion Landau damping
needs to be correctly modeled.

e New semikinetic model from drift-kinetic theory gives reasonable description of ion Lan-
dau damping, both for critical rotation and RFA experiments.

e MARS-F with kinetic damping predicts critical rotation speed for RWM stabilization in
ITER at 1.5-3%v, (at plasma center). ITER may not have sufficient rotation to stabilize the
mode.

e The n = 1 RWM in ITER can be feedback controlled for 3 up to " " 4 Cy(fidea! wall —
pro wall) with Cp ~ 0.6 — 0.8, by

— single feedback coil outside the resistive wall
— poloidal sensors inside the vessel

— PID controller

e Future work:

— Rotation: kinetic damping with more physics

— Feedback: realistic amplifier, 3D wall effects, system noises, superconducting coil AC losses etc.
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