20th IAEA Fusion Energy Conference, 2004

QuickTimeý C¹ TIFFÁLZWÁ 4LJENECEOEJEÁ C™CµCÁEsENE EEC%ARCEC2CVC...COIKóvC-C AE Naka Fusion Research Establishment, Japan Atomic Energy Research Institute

Stationary high confinement plasmas with large bootstrap current fraction in JT-60U

Y. Sakamoto, T. Fujita, S. Ide, M. Takechi, T. Suzuki, A. Isayama, H. Takenaga, N. Oyama, Y. Kamada and the JT-60 Team

<u>Contents</u>

Introduction

Stationary discharges with nearly full non-inductive CD

- 1. Weak shear plasma regime
- 2. Reversed shear plasma regime

Summary

JT-60U

Steady-state operation of tokamak: Full CD + large f_{BS} In JT-60U, optimizing advanced tokamak for 10 years

High β_p H mode (WS regime): Steady-State / Hybrid

JT-60U

Steady-state operation of tokamak: Full CD + large f_{BS} In JT-60U; optimizing advanced tokamak for 10 years High β_n H mode (WS regime): Steady-State / Hybrid **Concept DEMO** Particle High integration p(r) Opt. for NTM near j(r) SS Control High δ NNB&EC W-div. NNB&EC Higher β β_N=2.7&f_{BS}~30% f_{BS}~42% β_NH~7&f_{BS}~51% f_{BS}~74% for ~7.4s (NTM) ~4.5s Full CD ~2s FullCD ~1.3s 20th IAEA 15th 16th **18th 17th 19th**

JT-60U

- JT-60U

Progress of long sustainment of large f_{BS} under nearly full non-inductive CD

Progress of long sustainment of large f_{BS} under nearly full non-inductive CD

Progress of long sustainment of large f_{BS} under nearly full non-inductive CD

Achieved region of large f_{BS} has significantly been extended.

Weak shear plasma regime towards ITER steady state scenario

<u>lssue</u>:

Avoidance of NTMs

Key:

Optimization of q profile (q_{95} ~4.5) Quite low q_{95} ~2.2 (T. Suzuki, EX1-3)

f_{BS}~45% sustained for ~5.8s (~2.8τ_R) under nearly full CD in weak shear plasma

<u>Scenario</u>: High β_p ELMy H-mode (2.4T, 1MA, q_{95} ~4.5, δ ~0.5)

Non inductive CD: P_{NB}^{inj}(co)~4.5MW & P_{NNB}^{inj}~4MW & Bootstrap

f_{BS}~45% sustained for ~5.8s (~2.8τ_R) under nearly full CD in weak shear plasma

Scenario: High β_p ELMy H-mode (2.4T, 1MA, q_{95} ~4.5, δ ~0.5)

Non inductive CD: P_{NB}^{inj}(co)~4.5MW & P_{NNB}^{inj}~4MW & Bootstrap

f_{BS}~45% sustained for ~5.8s (~2.8τ_R) under nearly full CD in weak shear plasma

Scenario: High β_p ELMy H-mode (2.4T, 1MA, q_{95} ~4.5, δ ~0.5)

Non inductive CD: P_{NB}^{inj}(co)~4.5MW & P_{NNB}^{inj}~4MW & Bootstrap

Avoidance of NTM: alignment of ∇p and q=m/n (3/2, 2/1,..)

p(r) and q(r): optimized by feedback control of W_{dia} and injection timing of NBs

Avoidance of NTM: alignment of ∇p and q=m/n (3/2, 2/1,..)

p(r) and q(r): optimized by feedback control of W_{dia} and injection timing of NBs

Avoidance of NTM: alignment of ∇p and q=m/n (3/2, 2/1,..)

p(r) and q(r): optimized by feedback control (W_{dia}) and injection timing of NBs

T-60U :

Avoidance of NTM: alignment of ∇p and q=m/n (3/2, 2/1,..)

p(r) and q(r): optimized by feedback control (W_{dia}) and injection timing of NBs

Reversed shear plasma regime with larger bootstrap current fraction

Target :

Long sustainment (>τ_R)

large f_{BS} under full CD

<u>Issue</u> :

ITB control

under the plasma with large f_{BS} characterized by strong linkage between p(r) & j(r).

f_{BS}~75% sustained for ~7.4s (~2.7τ_R) under nearly full CD in RS plasma

JT-60U

<u>Scenario</u>: Reversed shear ELMy H-mode (3.4T, 0.8MA, q₉₅~8.6, δ~0.42) Non-inductive CD: Bootstrap dominant & P_{NB}^{inj}(co)=3.2MW

f_{BS}~75% sustained for ~7.4s (~2.7τ_R) under nearly full CD in RS plasma

<u>Scenario</u>: Reversed shear ELMy H-mode (3.4T, 0.8MA, q₉₅~8.6, δ~0.42) Non-inductive CD: Bootstrap dominant & P_{NB}^{inj}(co)=3.2MW

q and pressure profiles reached stationary condition with f_{BS}~75%

Strong RS (s~-1.5) --> Weaker (s~-0.8)

ITB & ETB are formed.

ITB radii decrease by change in q(r).

JT-60U •

q and pressure profiles reached stationary condition with f_{BS}~75%

Strong RS (s~-1.5) --> Weaker (s~-0.8)

ITB & ETB are formed.

 $j_{BS} + j_{BD}$ agrees well $j_{tot} --> j_{OH}$ is small

ITB radii decrease by change in q(r).

IT-60U •

∇ T_i reduction at ITB through rotation control enable long sustainment JT-60U

Reversed shear plasma frequently disrupted at q_{min}~integer.

∇ T_i reduction at ITB through rotation control enable long sustainment

Reversed shear plasma frequently disrupted at q_{min}~integer.

ITB control by toroidal rotation to avoid disruption for the plasma with strong linkage between p(r) & j(r). (= ITB control by V_T : IAEA 2000 (Y. Sakamoto)

In this phase, combination of tang-NB was changed from CO(~3MW)+CTR(~0.8MW) to CO(~3MW) + no CTR. This change drives CO rotation.

∇ T_i reduction at ITB through rotation control enable long sustainment JT-60U

Reversed shear plasma frequently disrupted at q_{min}~integer.

ITB control by toroidal rotation to avoid disruption for the plasma with strong linkage between p(r) & j(r). (TB control by V_T : IAEA 2000 (Y. Sakamoto)

∇ T_i reduction at ITB through rotation control enable long sustainment JT-60U

Reversed shear plasma frequently disrupted at q_{min}~integer.

ITB control by toroidal rotation to avoid disruption for the plasma with strong linkage between p(r) & j(r). (TB control by V_T : IAEA 2000 (Y. Sakamoto)

Summary

JT-60U

- Towards steady state operation of tokamak,
- JT-60U has made significant progress in terms of
- long sustainment of plasmas with large f_{BS} in two regimes.
- (1) Weak shear regime

High integrated performance plasma with f_{BS} ~45% was sustained for ~5.8s (~2.8 τ_R) under nearly full non-inductive CD.

(2) Reversed shear regime

Quite high confinement (HH~1.7) plasma with f_{BS} ~75% was sustained for ~7.4s (~2.7 τ_R) under nearly full non-inductive CD.

ITB control through rotation for the plasma with strong linkage between p(r) & j(r) was demonstrated, which enable long sustainment.