

Dimensionless Identity Experiments in JT-60U and JET

G Saibene¹, N Oyama², Y Andrew³, JG Cordey³, E de la Luna⁴, C Giroud³, K Guenther³, T Hatae², GTA Huysmans⁵, Y Kamada², MAH Kempenaars⁶, A Loarte¹, J Lönnroth⁷, D McDonald³, A Meiggs³, MFF Nave⁸, V Parail³, R Sartori¹, S Sharapov³, J Stober⁹, T Suzuki², M Takechi², K Toi¹⁰, H Urano²

 EFDA Close Support Unit – Garching, Germany.
 Naka Fusion Research Establishment, JAERI, Japan.
 Euratom/UKAEA Fusion Association, Culham, UK.
 CIEMAT-Euratom Association, Madrid, Spain.
 Association Euratom/CEA, Cadarache, France
 FOM-Rijnhuizen, Association Euratom-FOM, Nieuwegein, The Netherlands.
 Association Euratom-Tekes, Helsinki University of Technology, Finland.
 Centro de Fusao Nuclear, Euratom-IST Association, Portugal.
 Association Euratom/IPP, MPI fur Plasmaphysik, Garching, Germany.
 National Institute for Fusion Science, Gifu, Japan

This work has been carried out under the patronage of the ITPA-pedestal group and in the framework of the IEA/LT agreement

Many thanks to Y Gribov (ITER-IT, Naka)

Motivation and aims

- Dimensionless scaling: plasma physics is invariant to changes of dimensional plasma parms when dimensionless parms are matched → identity
- JET and JT-60U: very similar size → verification of how complete/valid dimensionless descriptions are
- Aim → Achieve dimensionless matched <u>pedestal</u> parameters in standard Type I ELMy H-modes & compare plasma behaviour and confinement
 - Dimensionless matching → plasmas very near in their dimensional parameters
 - Well matched plasma geometry
 & size(<2% in δ, κ, a)
 - The major radius is different $\rightarrow \epsilon_{JET} \sim 1.15 \epsilon_{JT-60U}$

Experimental conditions

•At matched $B_T \rightarrow power \& n \text{ scans at } 2 \text{ I}_p \rightarrow \text{q}_{95}=3.1 \& 5.1$ 1.8MA/3.1T(JT-60U) \Leftrightarrow 1.9MA/2.9T(JET) 1.08MA/3.1T(JT-60U) \Leftrightarrow 1.1MA/2.9T(JET)

- Additional heating
 - JT-60U: PNB (85 keV) Perp + Co + Counter) & NNB (Co, 4MW, 360keV) beam mix → net Co injection
 - JT-60U: JET configuration has large $R \rightarrow B_T$ ripple ~1.2% - Large fast ion losses (MWs, up to 40% P_{inj})- net P_{ir} limit
 - JET: PNB (85 and 105 keV, 20MW) dominant Co + combined PNB/H minority ICRH – ripple & losses negligible

Pedestal parameters – n & T

•
$$p_{ped}$$
 (JT-60U) $\leq p_{ped}$ (JET)

- At q₉₅=3.1 p_{ped},_{JT-60U} in Type I ELMs matched in JET only with Type III ELMs.
- At q₉₅=5.1 similar p_{ped} obtained in JET *low-power* H-modes and JT-60U Type I H-modes

With NNB

 Fast ion losses → both q₉₅, losses reduced ~2 at constant net P_{in}

P_{ped} up by ~45% at high q, but no improvement at low q.

NNB injection: losses & rotation

G Saibene - 5

1.0

Dimensionless analysis

- A simultaneous match of v^* , ρ^*_{tor} and $\beta_{p,ped}$ is obtained with PNB between JET low P_{in}/P_{th} and JT-60U H-modes
- Similar results at q₉₅=3.1 (fuelling used to reduce JET T_{ped})
- A match at high β_{p,ped} is obtained only at q₉₅=5.1 & with JT-60U NNB H-modes, and if ρ*_{pol} is chosen for the dimensionless comparison (pedestal width scaling?)
- Still, W_p (and H₉₈) and ELMs (f_{ELM}, losses) very different in the two devices (more later) G Saibene - 6

Close Support Unit - Garching

Pedestal profile comparison

- Matching discharge pairs $\rightarrow T_{e}(r)$ are similar in value, ∇ and width Δ
- This is the case for both q₉₅, and NNB and PNB H-modes.
- Space/time resolution of T_i(r) in JET not good enough for profile comparison.
- Different story for n_e(r) → n_{e,ped} (JET) > n_{e,ped} (JT-60U)
- $\Delta n_e (JET) > \Delta n_e (JT-60U)$
- ∇n: quality of n_e profiles in JET not that good but ∇n(JET)≥∇n(JT-60U)

f_{ELM} and ELM losses

- f_{ELM}, ELM size & losses are very different in the two devices:
 - f_{ELM} (JT-60U) ~1.5-3×f_{ELM} (JET) for the same P_{sep}
 - Dimensionless match (f \propto 1/B) also quite poor, apart from the q₉₅=5.1 NNB case
 - $\Delta W_{ELM}(JT-60U) << \Delta W_{ELM}(JET)$
 - Ratio between ELM power losses $(P_{ELM} = <\Delta W_{ELM} > \times f_{ELM})$ and P_{sep} is 20% (JT-60U) vs ~50-60% (JET)

⇒ for similar P_{sep} , inter-ELM transport in JT-60U >> JET (W_{plasma} JT-60U ≤ W_{plasma} JET)

Close Support Unit - Garching

Global Confinement

- H_{98} (JT-60U) < H_{98} (JET) at both q_{95} - $<H_{98}$ JT-60U> ~ 0.75 vs $<H_{98}$ JET> ~ 1.1 at q_{95} =3.1
 - $\langle H_{98} JT-60U \rangle \sim 0.85 vs$ $\langle H_{98} JET \rangle \sim 1.1 at q_{95}=5.1$
- All plasmas are NTM free
- A ε⁻³ dependence of H₉₈ would be required (all the rest being equal) to account for this difference !
- JT-60U: H₉₈ of PNB plasmas is similar to NNB plasma
- Core profiles: H-mode in JET, ITB in JT-60U (high q) + systematic differences in n(r) (ρ ~ 0.5-0.6)

Discussion (1): MHD stability and rotation

- Dimensionless matched pedestals in JT-60U PNB and JET
 → found only for JET H-modes at low p_{ped} (low power, near Type I→III ELM transition, or with gas puff). Why?
- ε effects on MHD stability are not sufficient to explain the difference in pedestal pressure [G Saibene et al. PPCF 46 (2004) A195]
- Why does p_{ped} JT-60U go up with NNB ? (at least at high q)
 - Comparison of MHD stability of PNB & NNB phases of q=5.1 JT-60U H-mode shows with NNB the pedestal enters more deeply the 2nd stability region
- Does the change in rotation with NNB affect pedestal MHD?
 - First calculations on JT-60U plasmas with MISHKA-D →
 rotation has a small (de)-stabilising effect on the pedestal
 → not sufficient to change modes growth rate significantly

Discussion (2): ripple & thermal ion transport

• Transport simulation: χ_i artificially enhanced over a layer

Ripple enhanced transport from 2 to 20 times $\chi_{i.}$

• Initial results: further modelling is in progress.

Rotation & B_T ripple in ITER

Fast ion ripple losses for ITER Q=10 are negligible

- Ripple losses shoul
 have no effect on
 rotation in ITER
- So far, rotation effects on JT-60U MHD stability small (even for -v_{tor}) →

0.5< B_T ripple % <1 Outer midplane region

- B_T ripple at ITER midplane is intermediate between JET and JT-60U
- Could thermal ion transport play a role?

v_{tor}, ITER is small but + → this analysis would indicate small effect on predicted MHD stability – more analysis required

Conclusions

- Dimensionless identity experiments in JT-60U and JET → is valid approach if no additional physics plays a significant role.
- Care should be taken in multi-machine scalings, to distinguish between "scatter" and real differences between experiments
- The difference between JT-60U and JET pedestal performance is probably correlated to B_T ripple strength, although the physics mechanism has not been identified \rightarrow effects of ripple losses and rotation need to be "separated".
- First analysis of rotation effects on MHD stability indicate that effects are small → the small magnitude of ITER v_{tor} should not significantly affect pedestal stability
- Hypothesis: ripple-enhanced thermal ion transport provides a mechanism for p_{ped} reduction? → some significance in ITER?
- Experiments proposed in JET to vary B_T ripple and study effects on pedestal, rotation and transport.

Aim & experimental parameters

- Aim → Achieve dimensionless matched <u>pedestal</u> parameters in standard Type I ELMy H-modes & compare plasma behaviour and confinement
- Simultaneous match of v^* , ρ^* , β and q gives:

$$\begin{split} I_p &\propto R^{-3/8} \ a^{-1/8} \sim \epsilon^{-3/8} \ a^{-1/4} & B \propto R^{-5/8} \ a^{-15/8} \sim \epsilon^{-5/8} \ a^{-5/4} \\ n &\propto a^{-2} & T \propto R^{-5/4} \ a^{-7/4} \sim \epsilon^{-5/4} \ a^{-1/2} \ (T_{JET} \sim 80\% \ T_{JT-60U}) \end{split}$$

• At matched $B_T \rightarrow power \& n \text{ scans at } 2 \text{ I}_p \rightarrow \text{q}_{95}=3.1 \& 5.1$

1.8MA/3.1T (JT-60U) ⇔ 1.9MA/2.9T (JET) 1.08MA/3.1T (JT-60U) ⇔ 1.1MA/2.9T (JET)

Close Support Unit - Garching

Dimensionless analysis – q₉₅=3.1

- Pedestal identity achieved at relatively high v^* and low ρ^*_{tor}
- → corresponds to a low T_{ped} JET plasma (gas fuelled to reduce T and p_{ped}, near to type I→III transition)
- NNB injection reduces fast ion losses/changes rotation by a similar amount to the high q₉₅ pulses but
- \rightarrow no improvement of $\beta_{p,ped}$ (p_{ped})over the best PNB H-modes

 Different pedestal behaviour of JT-60U H-modes at low and high q₉₅ is not understood

Comparison of core n & T profiles

OEFDA

Close Support Unit - Garching

- Core n and T_i (T_e) profiles different in the two devices, even for matched dimensionless pedestal parameters:
 - JET has H-mode profiles, while ITB observed in many JT-60U plasmas (in particular at high q with PNB)
 - Systematic differences in the shape of n(r), at both q (exception, high q and NNB)
 - → core transport may be different in the two devices → transport analysis of discharge pairs pending

EFDA Close Support Unit - Garching **NNB drive pedestal in 2nd stability region (MISHKA-1, JT-60U q**₉₅=5.1)

Discussion (2): ripple & thermal ion transport

• Transport simulation: χ_i artificially enhanced over a layer

Further analysis of JET and JT-60U pulse pairs in progress

Ion thermal conductivity profile

• Profile of χ_i (JETTO) – with /without ripple effects

