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Fast ions in burning plasma 
 

1) ITER: Pα/Pin = 2 for Q=10 ⇒ different fast ions of comparable energy content: 
• Fusion-born α’s with T≈ 1 MeV  
• Deuterium NB injected at ≈ 1 MeV  
• ICRH-accelerated ions of H, 3He, … 

⇓ 
Diagnostics measuring simultaneously several groups of fast ions are required 
 
2) For assessing fast ion effects on Alfvén Eigenmodes (AEs), fishbones, 
sawteeth etc. measurements of fast ion profiles are desirable with time 
resolution of at least ∆t ∼ 1/νeff  (time for establishing the fast ion distribution) 
 
3) The diagnostics must be compatible with DT operation. 
 
4) Good theory/modeling and experimental data base must exist for identifying 
all the crucial fast ion problems.  

 
What can we achieve on existing facilities? 
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Alpha Simulation Experiment in JET Helium Plasma 
 

Studies complimentary to  
T-trace Exp. (paper by D.Stork  OV/4-1), 
but performed at very low neutron rates 
in not-activating environment 
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4He acceleration with 3ω(4He) ICRF heating of 4He NBI (2002) 
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4He plasma + 8 MW of ICRH at 3ω(4He) + 
120 keV 4He beam of power 1.5 MW 

⇓ 
H-mode with MeV energy 4He ions: 
    THot = 1.1 ± 0.4 MeV, 
    nHot / ne ∼ (∆WDIA/WDIA)*(Te/THot) ∼ 10-3 
M.Mantsinen et al., Phys.Rev.Lett. 88 
(2002)105002  
 
Fast ion parameters are close to these 
in record DT discharge #42976:  
THot ≈ 1MeV, nHot / ne ∼ 4⋅10-3  ,  
but achieved at four orders lower 
neutron rates  

⇓ 
NO ACTIVATION  
Very good scenario for developing and  

   testing α-diagnostics ! 
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4He acceleration technique in reversed shear plasmas (2004) 
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Alfvén Cascades excited by 4He ions e
in JET reversed-shear discharge 
#63038. 
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 Simultaneous Measurement of 4He (E>1.7 MeV) and D (E>0.5 MeV)  
 
Energy windows for ALL Gamma
Camera channels 
 
I > 2.0 MeV  (total) 
II 2.5 - 3.5 MeV (D+C)     
III spare 
IV 4.0 - 5.0 MeV (4He+Be)
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Gamma-ray Images of 4He (E>1.7 MeV) and D (E>0.5 MeV) in  
Reversed and Positive Shear JET Plasmas  
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4He in reversed-shear discharge
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4He in monotonic q(r)-plasma 
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D in monotonic q(r)-discharge 
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Effect of Alfven Eigenmodes on  

ICRH-accelerated protons in q=1 plasmas 
 
This data supports previously published results from  
JT-60U (Saigusa et al., PPCF 40 (1998) 1647) 
TFTR (Bernabei et al., Phys. Rev. Lett. 84 (2000) 1212) 
DIII-D (Heidbrink et al., Nuclear Fusion 39 (1999) 1369) 
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Gamma-ray intensity from 5MeV protons decreases 
 0.5–1 sec before sawtooth crashes 
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 The Gamma-ray Decrease Happens when  
TAEs within q<1 (tornado modes) and TAEs outside q=1 coexist  
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Pulse No: 60195, Probe H302: mode amplitude log(|δB(T)|)

 
TAEs & tornadoes during first  
shaded time interval  
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The Gamma-ray Decrease Happens when  
TAEs within q<1 (tornado modes) and TAEs outside q=1 coexist  
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Orbits of 5 MeV protons

 
• Prompt losses of protons with E>5 MeV (orbit width ∆f /a ≤ 0.5) enhanced 

by the TAEs are considered as a primary channel of proton losses. 
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ICRF acceleration of 3He: a step towards  
time resolved profiles of fast ions 
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Why Fast 3He in 4He Plasma? 
 

3He with E>500 keV generates lots of gamma-rays when it collides with C and Be: 

• For given ne ,Ti VA / VTi is higher in He plasma ⇒ smaller AE damping on thermal 
ions  

• Low neutron yield in 4He plasma ⇒ excellent conditions for gammas 
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Profile of Fast Ions (Top) Measured Simultaneously with AEs (Bottom)   

 

Notches of ICRH power (5 MW →1MW) show modes most sensitive to 3He ions 
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Linear and Nonlinear Characteristics of AEs 
Assessed from Measured Profiles of Fast Ions 

 
Nonlinear pitchfork splitting of ICRH-driven TAE as dβfast/dr increases by ∼40% 
 
Tens of AEs were excited, but no degradation of fast 3He observed in these 
I=2.3 MA discharges with orbit width of 3He ions ∆f /a <<1. 



 

S.E.Sharapov et al, 20th IAEA Fusion Energy Conference, Vilamoura, Portugal, 1st-6th November 2004 
  
 

 

 
 

 
 

Alfvén Eigenmodes in High-β Spherical Tokamaks 
 
See also papers  
G.F.Counsell (OV/2-4) and  
H.L.Berk (TH/5-3)  
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Alfvén Instabilities Driven by Passing Super-Alfvénic Ions on MAST 
 

• JET: AEs driven by trapped ions,  
• MAST: AEs driven by passing ions (more relevant for α-driven AEs) 
• Wide variety of AEs on MAST:  
 

-   TAEs and EAEs; 
- frequency-sweeping “chirping” modes;  
-   fishbones; 
- modes above the AE frequency range. 

 
• Larger range of βfast / βthermal and βthermal(0) ∼ 1 on MAST  
• Some of AEs observed on MAST are also obtained on larger-scale machines, 

but with sophisticated techniques, e.g. with NNBI on JT-60U or at low B on JET 
⇓ 

MAST is a perfect test-bed for studying AEs. 
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Strong Non-linear Effects Are Observed on MAST 
 
Nonlinear wave-particle effects observed for AEs on MAST: 
 
• Pitchfork splitting 
 
• Up-down sweeping TAE modes (BGK-type modes, or “holes and clumps”, 

also see H.Berk, this conference, TH/5-2Ra). 
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Non-Perturbative “Chirping” Modes Are Common  

 
MAST #9109, 1.2 MW of 40 keV NBI at IP flat-top, β≈3% 

Profiles of fast ions resolved with ∆t ≈ 1 ms are needed for analysing these. 

NBI 
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Suppression of AEs in Higher-β Plasmas  
 

• TAEs are suppressed by high-pressure effect at <β> ≥ 5% 
• “Chirping” modes are suppressed by high-β due to thermal ion Landau 

damping (both MAST and START data) 
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Energetic ion transport by Alfvén eigenmode
induced by Negative-ion-based Neutral Beam Injection 
in JT-60U Reverse Shear and Weak Shear Plasmas



Alfvén Eigenmode (AE) experiments have been  performed by using 
Negative-ion-based Neutral Beam (ENNB>360keV, PNNB>4MW)

energetic ion transport due to AEs

However, It is not understood how energetic ions transport

- neutron emission profile
- detailed energy distribution of neutral particle fluxes

- in Weak shear plasma
Abrupt Large-amplitude Events (ALEs), Fast Frequency Sweeping modes

(K. Shinohara, et al.,Nucl. Fusion 41(2001) p603) 
(18th. IAEA Fusion Energy Conference)

- in Reversed shear plasma
Reversed-Shear induced Alfvén Eigenmode (RSAE), its transition to TAE

(19th. IAEA Fusion Energy Conference)

beam-thermal reaction is dominant  

JT-60U
Introduction to Alfvén Eigenmode Study in JT-60U

Reduction of Total Neutron Emission Rate
due to AEs has been observed

have been newly measured in order to investigate energetic ion transport



JT-60U

Neutron Profile
Monitor

Objectives :  
-Measure radial profile of  
neutron emission rate

investigate energetic ion transport from change in neutron 
emission profile and enhanced neutral particle fluxes

Objectives :  
-Measure fast neutral particle 
fluxes and energy distribution

Neutral  Particle
Analyzer (NDD)

6 channel Neutron 
Profile Monitor

CX-Neutral Particle Analyzer
(Natural Diamond Detector) 

Diagnostics for investigation 
of energetic ion transport

JT-60U
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JT-60U
E43014

inner channels   ---- decrease
outer channels   ---- increase
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Resonance condition 

0.6

0.8

1

1.2

1.4

1.6

0 50 100 150 200 250 300 350 400

N

Enegy [keV]

frequency 40-65 kHz
q =1.3-1.5

N=(f/f
c
)q-nq+m

0

2

4

F n
 / 

F n

1

10

100

F n
 (a

.u
.) befor ALE

after ALE
ENNB

JT-60U

[ Resonance condition with the mode ]

Energy region of enhanced neutral particle fluxes has agreed with that predicted 
form the resonant interaction between energetic ions and modes

Enhance of neutral particle fluxes in

limited energy range (100~370 keV)
has been observed for the first time.

N= (f / fc) q - nq + m = integer
f = mode frequency (40 - 65 kHz)
q = safety factor ( 1.3 - 1.5)
n, m = troidal, poloidal mode number (1, 2)
Fc = troidal transition frequency of energetic ions 

Change in energy distribution of neutral particle fluxes

( R. B. White et.al. Phys. Fluids 26 (1983) 2958 )

Detail of energy distribution of neutral particle fluxes has been measured.
The energetic ions are neutralized through a charge exchange reaction
with D0 or C5+ in outer region

Resonant energy range => 80 ~  350 keV
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Summary 
 

• α-simulation experiment: fast 4He measured in shear-reversed and 
monotonic-q(r) plasmas. 4He losses - when orbit size ∆f comparable to a. 
 

• Simultaneous measurements of 4He with E>1.7 MeV and D with E>500 keV 
 

• Decrease of γ-rays from 5 MeV protons during “tornado” and TAE activity is 
interpreted as TAE-enhanced loss of protons with ∆f ≤ a 
 

• Time-resolved profile of 3He ions (E>500 keV) measured simultaneously with 
AEs ⇒ study with measured fast ion profiles becomes possible. No losses. 
 

• A wide variety of AEs on MAST including “hole+clumps” and non-
perturbative “chirping” modes. High-β suppresses TAEs and “chirping” modes. 

 
• On JT-60U, Abrupt Large-amplitude Events (ALEs) excited by NNBI with 
E>360 keV (V⎢⎢/VA∼1.03) cause radial redistribution of fast ion profile in limited 
energy region (100 – 370 keV), with 4% losses. 

 
 


