E U R O P E A N F U S I O N D E V E L O P M E N T A G R E E M E N T

Experimental Studies of Instabilities and Confinement of Energetic Particles on JET and on MAST

S.E.Sharapov, B.Alper, F.Andersson¹, Yu.F.Baranov, H.L.Berk², L.Bertalot³, D.Borba⁴, C.Boswell⁵, B.N.Breizman², R.Buttery, C.D.Challis, M.de Baar⁶, P.de Vries, L.-G.Eriksson⁷, A.Fasoli⁸, R.Galvao^{9,4}, V.Goloborod'ko^{10,11}, M.P.Gryaznevich, R.J.Hastie, N.C.Hawkes, P.Helander, V.G.Kiptily, G.Kramer¹², P.J.Lomas, J.Mailloux, M.Mantsinen¹³, R.Martin, F.Nabais⁴, F. Nave⁴, R.Nazikian¹², J-M.Noterdaeme¹⁴, M.S.Pekker², S.D.Pinches¹⁴, T.Pinfold, S.Popovichev, P.Sandquist¹, D.Stork, D.Testa⁸, A.Tuccillo³, I.Voitsekhovich, V.Yavorskij^{10,11}, N.P.Young, F.Zonca³, JET-EFDA Contributors^{*} and the MAST Team.

- Euratom/UKAEA Fusion Assoc., Culham Science Centre, UK 1. Euratom/VR Fusion Assoc., Chalmers University of Technology, Sweden 9. Inst. Physics, University of Sao Paulo, Brazil
- 2. IFS, University of Texas at Austin, USA
- 3. Assoc. Euratom/ENEA/CNR Fusione, Italy
- 4. Euratom/IST Fusion Assoc., Centro de Fusao Nuclear, Portugal
- 5. PSFC, Massachussets Institute of Technology, USA
- 6. Assoc. Euratom-FOM Inst. Plasmaphys. 'Rijnhuizen', The Netherlands
- 7. Assoc. Euratom/CEA, Cadarache, France

8. CRPP/EPFL, Assoc. Euratom-Conf. Suisse, Switzerland
9. Inst. Physics, University of Sao Paulo, Brazil
10. Assoc. Euratom-OEAW, University of Innsbruck, Austria
11. Institute Nuclear Research, Kiev, Ukraine
12. Princeton Plasma Physics Laboratory, USA
13. Helsinki University of Technology, Assoc. Euratom-Tekes, Finland
14. Max Planck Institute Plasmaphysik, Euratom Assoc., Germany

^{*} See Annex of J Pamela et al., this conference, paper OV/1-X

S.E.Sharapov et al, 20th IAEA Fusion Energy Conference, Vilamoura, Portugal, 1st-6th November 2004

Fast ions in burning plasma

1) ITER: $P_{\alpha}/P_{in} = 2$ for Q=10 \Rightarrow different fast ions of comparable energy content:

- Fusion-born α 's with T \approx 1 MeV
- Deuterium NB injected at ~ 1 MeV
- ICRH-accelerated ions of H, ³He, ...

Diagnostics measuring simultaneously several groups of fast ions are required

1

2) For assessing fast ion effects on Alfvén Eigenmodes (AEs), fishbones, sawteeth etc. measurements of fast ion profiles are desirable with time resolution of at least $\Delta t \sim 1/v_{eff}$ (time for establishing the fast ion distribution)

3) The diagnostics must be compatible with DT operation.

4) Good theory/modeling and experimental data base must exist for identifying all the crucial fast ion problems.

What can we achieve on existing facilities?

S.E.Sharapov et al, 20th IAEA Fusion Energy Conference, Vilamoura, Portugal, 1st-6th November 2004

Alpha Simulation Experiment in JET Helium Plasma

Studies complimentary to T-trace Exp. (paper by D.Stork OV/4-1), but performed at very low neutron rates in not-activating environment

⁴He acceleration with 3ω (⁴He) ICRF heating of ⁴He NBI (2002)

⁴He plasma + 8 MW of ICRH at $3\omega(^{4}\text{He})$ + 120 keV ⁴He beam of power 1.5 MW \downarrow H-mode with MeV energy ⁴He ions: $T_{Hot} = 1.1 \pm 0.4 \text{ MeV},$ $n_{Hot} / n_e \sim (\Delta W_{DIA} / W_{DIA})^* (T_e / T_{Hot}) \sim 10^{-3}$ M.Mantsinen et al., Phys.Rev.Lett. 88 (2002)105002

Fast ion parameters are close to these in record DT discharge #42976: $T_{Hot} \approx 1 MeV$, $n_{Hot} / n_e \sim 4.10^{-3}$, but achieved at four orders lower neutron rates \downarrow

NO ACTIVATION Very good scenario for developing and testing α -diagnostics !

S.E.Sharapov et al, 20th IAEA Fusion Energy Conference, Vilamoura, Portugal, 1st-6th November 2004

⁴He acceleration technique in reversed shear plasmas (2004)

S.E.Sharapov et al, 20th IAEA Fusion Energy Conference, Vilamoura, Portugal, 1st-6th November 2004

Simultaneous Measurement of ⁴He (E>1.7 MeV) and D (E>0.5 MeV)

S.E.Sharapov et al, 20th IAEA Fusion Energy Conference, Vilamoura, Portugal, 1st-6th November 2004

Gamma-ray Images of ⁴He (E>1.7 MeV) and D (E>0.5 MeV) in Reversed and Positive Shear JET Plasmas

S.E.Sharapov et al, 20th IAEA Fusion Energy Conference, Vilamoura, Portugal, 1st-6th November 2004

Effect of Alfven Eigenmodes on ICRH-accelerated protons in q=1 plasmas

This data supports previously published results from JT-60U (Saigusa et al., PPCF 40 (1998) 1647) TFTR (Bernabei et al., Phys. Rev. Lett. 84 (2000) 1212) DIII-D (Heidbrink et al., Nuclear Fusion 39 (1999) 1369)

Gamma-ray intensity from 5MeV protons decreases 0.5–1 sec before sawtooth crashes

S.E.Sharapov et al, 20th IAEA Fusion Energy Conference, Vilamoura, Portugal, 1st-6th November 2004

The Gamma-ray Decrease Happens when TAEs within q<1 (tornado modes) and TAEs outside q=1 coexist

The Gamma-ray Decrease Happens when TAEs within q<1 (tornado modes) and TAEs outside q=1 coexist

and n=5,6 TAEs outside the q=1

- Orbits of 5 MeV protons
- Prompt losses of protons with E>5 MeV (orbit width $\Delta_f/a \le 0.5$) enhanced by the TAEs are considered as a primary channel of proton losses.

S.E.Sharapov et al, 20th IAEA Fusion Energy Conference, Vilamoura, Portugal, 1st-6th November 2004

ICRF acceleration of ³He: a step towards time resolved profiles of fast ions

Why Fast ³He in ⁴He Plasma?

³He with E>500 keV generates lots of gamma-rays when it collides with C and Be:

- For given n_e, T_i V_A / V_{Ti} is higher in He plasma ⇒ smaller AE damping on thermal ions
- Low neutron yield in ⁴He plasma \Rightarrow excellent conditions for gammas

Profile of Fast Ions (Top) Measured Simultaneously with AEs (Bottom)

Notches of ICRH power (5 MW \rightarrow 1 MW) show modes most sensitive to ³He ions

S.E.Sharapov et al, 20th IAEA Fusion Energy Conference, Vilamoura, Portugal, 1st-6th November 2004

Linear and Nonlinear Characteristics of AEs Assessed from *Measured* Profiles of Fast Ions

∏ime: 7,9042 to 9,4641 npt: 12000000 natp: 2048 nfft: 4096 f1: 157.8 f2: 219,9 apaceter v3.14(apind) – Vaer annahar: Sun Feb 23 1159/25 2004

Nonlinear pitchfork splitting of ICRH-driven TAE as $d\beta_{fast}/dr$ increases by ~40%

Tens of AEs were excited, but no degradation of fast ³He observed in these I=2.3 MA discharges with orbit width of ³He ions $\Delta_f/a <<1$.

S.E.Sharapov et al, 20th IAEA Fusion Energy Conference, Vilamoura, Portugal, 1st-6th November 2004

Alfvén Eigenmodes in High- β Spherical Tokamaks

See also papers G.F.Counsell (OV/2-4) and H.L.Berk (TH/5-3)

EUROPEAN FUSION DEVELOPMENT AGREEMENT

Alfvén Instabilities Driven by Passing Super-Alfvénic Ions on MAST

- JET: AEs driven by trapped ions,
- MAST: AEs driven by passing ions (more relevant for α -driven AEs)
- Wide variety of AEs on MAST:
 - TAEs and EAEs;
 - frequency-sweeping "chirping" modes;
 - fishbones;
 - modes above the AE frequency range.
- Larger range of β_{fast} / $\beta_{thermal}$ and $\beta_{thermal}(0) \sim 1$ on MAST
- Some of AEs observed on MAST are also obtained on larger-scale machines, but with sophisticated techniques, e.g. with NNBI on JT-60U or at low B on JET

MAST is a perfect test-bed for studying AEs.

1

Strong Non-linear Effects Are Observed on MAST

Nonlinear wave-particle effects observed for AEs on MAST:

- Pitchfork splitting
- Up-down sweeping TAE modes (BGK-type modes, or "holes and clumps", also see H.Berk, this conference, TH/5-2Ra).

S.E.Sharapov et al, 20th IAEA Fusion Energy Conference, Vilamoura, Portugal, 1st-6th November 2004

Non-Perturbative "Chirping" Modes Are Common

MAST #9109, 1.2 MW of 40 keV NBI at I_P flat-top, β≈3% Profiles of fast ions resolved with $\Delta t \approx 1$ ms are needed for analysing these.

Suppression of AEs in Higher-β **Plasmas**

- TAEs are suppressed by high-pressure effect at $<\beta> \ge 5\%$
- "Chirping" modes are suppressed by high- β due to thermal ion Landau damping (both MAST and START data)

On START, chirping mode amplitude decreases as beta increases above 4%.

MAST: dependence on β of maximum amplitude of chirping modes.

JT-60U

Energetic ion transport by Alfvén eigenmode induced by Negative-ion-based Neutral Beam Injection in JT-60U Reverse Shear and Weak Shear Plasmas

<u>M. Ishikawa</u>, M. Takechi, K. Shinohara, Y. Kusama, C. Z. Cheng³, G. Matsunaga, Y.Todo², N. N. Gorelenkov³, R. Nazikian³, G. J. Kramer³, A.Fukuyama¹

Naka Fusion Research Establishment of JAERI ¹Princeton Plasma Physics Laboratory, USA ²National Institute for Fusion Science, Japan ³Kyoto University, Japan

Introduction to Alfvén Eigenmode Study in JT-60U

JT-60U

Alfvén Eigenmode (AE) experiments have been performed by using Negative-ion-based Neutral Beam (E_{NNB}>360keV, P_{NNB}>4MW)

However, It is not understood how energetic ions transport

- neutron emission profile
- detailed energy distribution of neutral particle fluxes

have been newly measured in order to investigate energetic ion transport

Diagnostics for investigation of energetic ion transport

investigate energetic ion transport from change in neutron emission profile and enhanced neutral particle fluxes

Bursting AE(Abrupt Large-amplitude Event, ALE) in Weak Shear Plasmas

- Bursting modes called ALEs are observed in the frequency range of TAE during NNB injection.

- mode amplitude of ALEs reaches $\tilde{B}_{\rho}/B_{\rho} \sim 10^{-4}$ at the first wall

- Alfvén gap exist at r/a ~ 0.2-0.4

Change in neutron emission profile and energetic lon density profile due to ALE

ALEs expel a significant energetic ion population from core to the outer region (redistribution and loss)

Change in energy distribution of neutral particle fluxes

- **_ JT-60U**
- Detail of energy distribution of neutral particle fluxes has been measured.
 The energetic ions are neutralized through a charge exchange reaction with D⁰ or C⁵⁺ in outer region

Energy region of enhanced neutral particle fluxes has agreed with that predicted form the resonant interaction between energetic ions and modes

Summary

- α -simulation experiment: fast ⁴He measured in shear-reversed and monotonic-q(r) plasmas. ⁴He losses when orbit size Δ_f comparable to *a*.
- Simultaneous measurements of ⁴He with E>1.7 MeV and D with E>500 keV
- Decrease of γ -rays from 5 MeV protons during "tornado" and TAE activity is interpreted as TAE-enhanced loss of protons with $\Delta_f \leq a$
- Time-resolved profile of ³He ions (E>500 keV) measured simultaneously with AEs \Rightarrow study with measured fast ion profiles becomes possible. No losses.
- A wide variety of AEs on MAST including "hole+clumps" and nonperturbative "chirping" modes. High-β suppresses TAEs and "chirping" modes.
- On JT-60U, Abrupt Large-amplitude Events (ALEs) excited by NNBI with E>360 keV ($V_{||}/V_{A}\sim 1.03$) cause radial redistribution of fast ion profile in limited energy region (100 370 keV), with 4% losses.