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Kinetic instabilities are an important

Issue for Spherical Torl
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— Strong drive for EPM and Alfvénic modes. . ARIES-ST . -
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Compact device, large fast ion orbit:

— Long wavelength Alfvén modes
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— Enhanced fast ion transport
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NSTX, DIlI-D are complementary for

benchmarking codes (M3D,HYM,NOVA). oo v ]
Bfast(o) / Btot(o)

Compressional and Toroidal Alfvén Eigenmodes (CAE/TAE),
as well as Energetic Particle Modes (EPM) are all expected.

Low aspect ratio more stable for ballooning modes (KBM).




Broad Spectrum of kinetic instabilities In

both NSTX and DIII-D at low field
. D NSTX ——
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EPMs, TAE and CAE seen on both NSTX and DIII-D.
EPM and TAE induce significant fast ion losses.
Modes seen where fast-ion B is high.
What are controlling parameters: V/V,, A B o5 R/a?



TAE can cause significant losses at
both low and high aspect ratio,

51D @ NS TH ——
. Largest losses occur with multiple unstable modes.
On NSTX: arr NSTX 108530 DULR L5040
- TAEs most virulent in low- £ Eq“ e & N
shear, q(0) = 2 regime*. 51003 MM AT A "i 100
— TAE seen at toroidal B's 2 | .ul‘lqh | o
greater than 20%. 3 500w, ‘ ] 5 150
— Observed growth rates in IEJ'EJ 3 :l o | "! \ N 3
good agreement with | \ v b

NOVA estimates.

— Up to 15% drops in DD
neutron rate from TAE.

- With higher shear, TAE not |
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*N.N. Gorelenkov, et al., Phys.Plasmas 7 (2000) 1433.



EPM bursts cause fast ion loss similar
to fishbones D s T

................... 2D 71524 .
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2 100l [ 199 correlate with large
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TIME (s) TIME (s) seen in NSTX
« On DIII-D, fishbones are more common than EPMs. — n=1, q(0)=1 |
« Higher frequency DIII-D chirping modes* resemble — and at precession
NSTX EPMS drift frequency

*Heidbrink, PPCF 37 (1995) 937.



Bursting modes can lead to fast ion loss events

D NSTX

 Losses from EPM and TAE.

— Neutron drop most sensitive to

loss of most energetic beam
lons.

« Higher current (smaller ion

orbit) has no effect on losses.
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than 20%, as predicted,;

« TAE/EPM seen at 3 greater

— EPMSs persist despite precession
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drift reversal (through bounce
resonance).



Do CAEs also drive fast ion transport?

e Correlation of neutron
drop with large CAE burst
has been observed.

« CAE bursts coincident
with EPM onset suggest

CAE-induced fast ion
transport.

« CAE amplitude typically
reduced by EPM-induced
fast ion loss.

* Three-way interaction of
fast ions with EPMs, TAE

and CAE difficult to model.
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Similarity study of CAE shows

~aspect-ratio dependence
DUED NSTX ——

CAE “weII” for “m = 3”, n=5 mode

DIII-D, NSTX can match
parameters, excepting major
radius.

CAE driven through Doppler-
shifted ion cylotron resonance
on both machines.

Greater poloidal localization of
CAE is expected at low aspect
ratio.

Graph of "well" from wave
equation qualitatively illustrates
behavior:
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» Modes evanescent on inboard side.




POI0|dally symmetric CAE seen in DIII-D
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. Sensors on inboard/outboard midplane detect CAE on DIII-D.
 Waves above =2.2 MHz are "symmetric".

« Lower frequency waves poloidally localized to outboard side.
« Similar measurements not yet available on NSTX.
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Simple model predicts
mode wells below

2.2 MHz are poloidally
localized

Above 2.2 MHz the
wells become more
symmetric, consistent
with observations.



Low aspect ratio predicted to enhance
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_FLR stabilization of ballooning modes

The enhanced stability results from a larger trapped-electron fraction.

ldeal MHD finds the region r/a<0.44 to be unstable; which shrinks to
0.27<r/a<0.36 with FLR effects (at an aspect ratio of 1.27).

Experiments on NSTX and DIII-D can study this prediction.
—r/R kgp, 0455 05 Rla=1.27, n = ne—lnlz

r/a
C. f Cheng and N.N. Gorelenkov, Phys. Plasmas, to appear in Phys. Plasmas (2004).



ST's In new regime of kinetic

s Instabilities P
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« A wide variety of kinetic instabilities has already been seen
in NSTX (and START, MAST); only the most common
discussed here.

* Kinetic instabilities not expected to be, nor are they, benign;
need capability to predict and scale.

« ST geometry is a challenge for many existing MHD codes;
we need to modify, or develop new, codes.
— Good progress is being made on theory of EPM's, TAE, CAE, KBM.
— As in conventional tokamaks, operation in advanced regimes likely to
introduce many new varieties of kinetic modes.
 NSTX and DIII-D provide excellent test beds for validating
theoretical models used to predict reactor (ITER, ARIES-ST)
stability to kinetic instabilities.




