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Kinetic instabilities are an important 
issue for Spherical Tori

• Low field, high density, high βfast ion; Vfast ion / Valfvén>1:
– Strong drive for EPM and Alfvénic modes.

• Compact device, large fast ion orbit:
– Long wavelength Alfvén modes

– Enhanced fast ion transport

• NSTX, DIII-D are complementary for 
benchmarking codes (M3D,HYM,NOVA).
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• Compressional and Toroidal Alfvén Eigenmodes (CAE/TAE), 
as well as Energetic Particle Modes (EPM) are all expected.

• Low aspect ratio more stable for ballooning modes (KBM).
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Broad Spectrum of kinetic instabilities in 
both NSTX and DIII-D at low field
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• EPMs, TAE and CAE seen on both NSTX and DIII-D.
• EPM and TAE induce significant fast ion losses.
• Modes seen where fast-ion β is high.
• What are controlling parameters: Vf/VA, βf/βtot, ρ*, R/a?



On NSTX:
• TAEs most virulent in low-

shear, q(0) ≈ 2 regime*.
– TAE seen at toroidal β's 

greater than 20%.
– Observed growth rates in 

good agreement with 
NOVA estimates.

– Up to 15% drops in DD 
neutron rate from TAE.

• With higher shear, TAE not 
bursting
– no enhanced fast ion loss

TAE can cause significant losses at 
both low and high aspect ratio, 

*N.N. Gorelenkov, et al., Phys.Plasmas 7 (2000) 1433.

• Largest losses occur with multiple unstable modes.
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EPM bursts cause fast ion loss similar 
to fishbones

• On NSTX, bursting, 
chirping EPMs 
correlate with large 
fast ion losses
– Losses up to 40%

• like fishbones
– Typically q(0), n > 1, 

• not like fishbones
– Driven through a 

bounce-resonance
• Some fishbones are 

seen in NSTX
– n=1, q(0)=1 
– and at precession 

drift frequency

• On DIII-D, fishbones are more common than EPMs.
• Higher frequency DIII-D chirping modes* resemble

NSTX EPMs *Heidbrink, PPCF 37 (1995) 937.
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• TAE/EPM seen at β greater 
than 20%, as predicted;
– EPMs persist despite precession 

drift reversal (through bounce 
resonance).

Bursting modes can lead to fast ion loss events

• Losses from EPM and TAE.
– Neutron drop most sensitive to 

loss of most energetic beam 
ions.

• Higher current (smaller ion 
orbit) has no effect on losses.
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Do CAEs also drive fast ion transport?
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• Correlation of neutron 
drop with large CAE burst 
has been observed.

• CAE bursts coincident 
with EPM onset suggest 
CAE-induced fast ion 
transport.

• CAE amplitude typically 
reduced by EPM-induced 
fast ion loss.

• Three-way interaction of 
fast ions with EPMs, TAE 
and CAE difficult to model.
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r• Modes evanescent on inboard side.
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Similarity study of CAE shows 
aspect-ratio dependence

• DIII-D, NSTX can match 
parameters, excepting major 
radius.

• CAE driven through Doppler-
shifted ion cylotron resonance 
on both machines.

• Greater poloidal localization of 
CAE is expected at low aspect 
ratio.

• Graph of "well" from wave 
equation qualitatively illustrates 
behavior:
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Poloidally symmetric CAE seen in DIII-D

• Sensors on inboard/outboard midplane detect CAE on DIII-D.
• Waves above ≈2.2 MHz are "symmetric".
• Lower frequency waves poloidally localized to outboard side.
• Similar measurements not yet available on NSTX.
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• Simple model predicts 
mode wells below 
2.2 MHz are poloidally 
localized

• Above 2.2 MHz the 
wells become more 
symmetric, consistent 
with observations.



Low aspect ratio predicted to enhance 
FLR stabilization of ballooning modes
• The enhanced stability results from a larger trapped-electron fraction.
• Ideal MHD finds the region r/a<0.44 to be unstable; which shrinks to  

0.27<r/a<0.36 with FLR effects (at an aspect ratio of 1.27).
• Experiments on NSTX and DIII-D can study this prediction.

C.Z. Cheng and N.N. Gorelenkov, Phys. Plasmas, to appear in Phys. Plasmas (2004).

ε = r/R, kθρi = 0.45, s = 0.5 R/a = 1.27, ηi = ηe = 1, n=12

2nd Stability

1st Stability

Unstable
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ST's in new regime of kinetic 
instabilities

• A wide variety of kinetic instabilities has already been seen 
in NSTX (and START, MAST); only the most common 
discussed here.

• Kinetic instabilities not expected to be, nor are they, benign; 
need capability to predict and scale.

• ST geometry is a challenge for many existing MHD codes;  
we need to modify, or develop new, codes.
– Good progress is being made on theory of EPM's, TAE, CAE, KBM.
– As in conventional tokamaks, operation in advanced regimes likely to 

introduce many new varieties of kinetic modes.

• NSTX and DIII-D provide excellent test beds for validating 
theoretical models used to predict reactor (ITER, ARIES-ST) 
stability to kinetic instabilities.


