

### Effect of the Dynamic Ergodic Divertor in the TEXTOR Tokamak on MHD Stability, Plasma Rotation and Transport

#### R. C. Wolf

S. Abdullaev, W. Biel, M. F. M. de Bock<sup>1</sup>, A. J. H. Donné<sup>1</sup>, K. H. Finken, S. Günter<sup>2</sup>, M. von Hellermann<sup>1</sup>, G. M. D. Hogeweij<sup>1</sup>, S. Jachmich<sup>3</sup>, M. Jakubowski, R. J. E. Jaspers<sup>1</sup>, A. Krämer–Flecken, H. R. Koslowski, M. Lehnen, Y. Liang, G. Matsunaga<sup>4</sup>, S. Ohdachi<sup>5</sup>, U. Samm, B. Schweer, K. Toi<sup>5</sup>, M. Tokar, B. Unterberg, S. K. Varshney<sup>1</sup>, E. Westerhof<sup>1</sup>, Q. Yu<sup>2</sup>, O. Zimmermann, and the TEXTOR Team

<sup>1</sup>FOM Institute for Plasma Physics Rijnhuizen, EURATOM Association – FOM, Nieuwegein, The Netherlands <sup>2</sup>Max-Planck-Institut für Plasmaphysik, Association EURATOM – IPP, Garching, Germany <sup>3</sup>Laboratoire de Physique des Plasmas, ERM / KMS EURATOM Association, Brussels, Belgium <sup>4</sup>Japan Atomic Energy Authority Institute, Naka, Japan <sup>5</sup>National Institute for Fusion Science, Gifu, Japan

### Relevance of magnetic field stochastization in ...

stellarators: characteristic magnetic island structure in island divertor  $\rightarrow$  high density H-mode

- tokamaks: (non-linear) interaction internal / external helical modes effect of magnetic field stochastization
  - $\rightarrow$  NTM mitigation
  - $\rightarrow$  ELM mitigation

#### **External helical magnetic field perturbation**

- mitigation of undesired instabilities
- control of edge transport
- avoidance of undue heat loads reaching plasma targets

- deterioration of confinement (heat and momentum transport)
- excitation of instabilities

### Dynamic Ergodic Divertor in TEXTOR (R = 1.75 m, a = 46 cm)



### Magnetic field topology





m/n = 3/1



### Plasma rotation and transport <u>below</u> threshold for tearing mode excitation (m/n = 3/1)

**Plasma parameters** do not change up to a certain perturbation threshold (static DED)

except toroidal rotation



94087

0

2

0

3

2



Drop of thermal plasma energy by 12%



Below threshold for tearing mode excitation toroidal plasma rotation increases in cocurrent direction



## ... independent of DED rotation direction and net angular momentum input



 $\rightarrow$  only level at which tearing mode is excited differs

- increase of toroidal rotation only scales with level of ergodization  $(I_{DED})$
- increase of corresponding  $v_{\phi} \times B_{\theta}$  is consistent with  $E_r$  generated by a preferential loss of electrons (but no global confinement change)
- observed  $\mathbf{v}_{\phi}$  is in  $\mathbf{E}_r \times \mathbf{B}_{\theta}$  drift direction
- run-away electrons show prompt loss when DED is switched on



- increase of toroidal rotation only scales with level of ergodization  $(I_{DED})$
- increase of  $v_{\phi} \times B_{\theta}$  is consistent with  $E_r$  generated by a preferential loss of electrons (but no global confinement change)
- observed  $\mathbf{v}_{\phi}$  is in  $\mathbf{E}_r \times \mathbf{B}_{\theta}$  drift direction
- run-away electrons show prompt loss when DED is switched on
- no viscosity effect energy confinement does not change
  - $\omega_{\phi}$  increases even at zero net angular momentum (balanced NBI)
- direct indications for  $E_r$  from probe and correlation reflectometry measurement, but only when tearing mode is excited



Floating potential from rake probe

*E<sub>r</sub>* from poloidal correlation reflectometer

### Plasma rotation and transport <u>above</u> threshold for tearing mode excitation (m/n = 3/1)

# Above certain threshold external perturbation (m/n = 3/1) excites m/n = 2/1 tearing mode



#### $\rightarrow$ MHD rotation locks to external perturbation

#### $\rightarrow$ Toroidal plasma rotation slows down

Strong m/n = 2/1 sideband favors excitation of corresponding tearing mode



#### To avoid disruption $q_a \ge 4.5$ required

### Clear evidence for formation of tearing mode (locked magnetic island)



# Dependence on initial plasma rotation (before mode excitation) depends on sign of rotation



### Conclusions

 Magnetic perturbation field (m/n = 3/1) of the Dynamic Ergodic Divertor increases plasma rotation independent of angular momentum input and direction of perturbation field rotation

 $\rightarrow$  under which conditions plasma braking or acceleration ?

- A tentative explanation is the ergodization of the plasma boundary which by an enhanced electron loss and the ambipolarity constraint generates a radial electric field
- With the (static) DED tearing mode stability can be controlled
  - Excitation threshold of *m/n* = 2/1 tearing mode (by *m/n* = 3/1 perturbation) depends on sign of initial plasma rotation (also dependence on density and β)

### $\rightarrow$ influence of rotational shear, mode spectrum on coupling mechanism, NBCD ?

- Stabilization with ECRH (ECCD)
- Stabilization of intrinsic tearing modes (m/n = 3/1) by imposing a higher harmonic (m/n = 12/4)

# Reproducible excitation of tearing mode allows study of mode suppression by ECRH



### Conclusions

 Magnetic perturbation field (m/n = 3/1) of the Dynamic Ergodic Divertor increases plasma rotation independent of angular momentum input and direction of perturbation field rotation

 $\rightarrow$  under which conditions plasma braking or acceleration ?

- A tentative explanation is the ergodization of the plasma boundary which by an enhanced electron loss and the ambipolarity constraint generates a radial electric field
- With the (static) DED tearing mode stability can be controlled
  - Excitation threshold of *m/n* = 2/1 tearing mode (by *m/n* = 3/1 perturbation) depends on sign of initial plasma rotation (also dependence on density and β)

### $\rightarrow$ influence of rotational shear, mode spectrum on coupling mechanism, NBCD ?

- Stabilization with ECRH (ECCD)
- Stabilization of intrinsic tearing modes (m/n = 3/1) by imposing a higher harmonic (m/n = 12/4)

#### m/n = 12/4 perturbation (static) stabilizes intrinsic m/n = 3/1 tearing mode



### Conclusions

 Magnetic perturbation field (m/n = 3/1) of the Dynamic Ergodic Divertor increases plasma rotation independent of angular momentum input and direction of perturbation field rotation

 $\rightarrow$  under which conditions plasma braking or acceleration ?

- A tentative explanation is the ergodization of the plasma boundary which by an enhanced electron loss and the ambipolarity constraint generates a radial electric field
- With the (static) DED tearing mode stability can be controlled
  - Destabilization of m/n = 2/1 tearing mode (by m/n = 3/1 perturbation) depends on sign of initial plasma rotation (also dependence on density and  $\beta$ )

### $\rightarrow$ influence of rotational shear, mode spectrum on coupling mechanism, NBCD ?

- Stabilization with ECRH (ECCD)
- Stabilization of intrinsic tearing modes (m/n = 3/1) by imposing a higher harmonic (m/n = 12/4)

#### Discussion

#### Resonant mode amplitudes

*m/n* = 3/1

m/n = 12/4



### Tearing mode excitation threshold depends on ...

density

β



# Reproducible excitation of tearing mode allows study of mode suppression



ECRH deposition scan (mode suppression)



### Impurity transport with DED



### Electron heat transport with DED (ECR heat pulse modulation)



### Evidence for tearing modes (SXR emission)

