

Particle and Energy Transport in Dedicated ρ^* , β and ν^* Scans in JET ELMy H-modes

<u>D C McDonald</u>, J G Cordey, K-D Zastrow, I Voitsekhovitch, C C Petty, M de Baar, E Joffrin, E de la Luna, P de Vries, G Maddison, P J Lomas, J Snipes, J Stober, D Stork and contributors to the EFDA-JET workprogramme

Structure of talk:

- Background
- Energy transport results
 - ρ^{*}, β, ν^{*} scans
- Trace tritium transport results
 - ρ*, β, ν* scans
- Theory and modelling implications
- Predictions for ITER

Background

•Kadomtsev (SJPP, 1975) and Connor and Taylor (NF, 1977) showed $\omega_c \tau_E \propto B \tau_E \propto F(\rho^*, \beta, \nu^*)$

 ρ^* = dimensionless Larmor radius, β = kinetic to magnetic pressure ratio, ν^* =normalised collisionality.

•IPB98(y,2) scaling from the Multi-machine database has dimensionless form $-2.70 \quad o -0.9 \dots -0.01$

$$B \tau_E \propto \rho^{*-2.70} \beta^{-0.9} v^{*-0.01}$$

•2-point scans of ρ^* , β and ν^* on JET (and JET/DIII-D for β) in 1996 gave

$$B \tau_E \propto \rho^{*-3.0} \beta^{-0.0} v^{*-0.3}$$

Particle transport is less well studied, He experiments indicate

$$\tau_{p,He} = 5 \times \tau_E$$

Energy: β scan results

Extensive β scans (ρ*, β and q fixed) by JET and DIII-D in 2003
[D C McDonald et al (PPCF, 2004) and C C Petty et al (PoP, 2004)]

•B_{τ_E} had only a weak dependence on β, even within Type I ELMs

Bτ_E \propto β^{0.0±0.1} •Hence, provided steady stable high β

steady stable high β operation can be maintained the performance of ITER will be significantly improved

Energy: v* scaling

Part of a collaboration with CMOD, so a high triangularity shape was used
The current was varied in the range I_p = 0.68 - 1.17MA
To keep ρ*, β and q fixed: B ∝ I; n ∝ I⁰; T ∝ I²

H-modes, IAEA - 20th Fusion Energy Conference, Vilamoura, Portugal, 4th Nov 2004

Energy: ρ* scaling with Type III ELMs

•Low triangularity shape. Current varied in the range $I_p = 1.3 - 4.3MA$ •To keep β , v* and q fixed: B \propto I; n \propto I^{4/3}; T \propto I^{2/3}

Energy: ρ* scan with Type I ELMs

•So for the full scan, Ip = 1.4 - 4MA, we take χ 's at x = 0.5

D. C. McDonald *et al*, Particle and Energy Transport in Dedicated ρ^* , β and v^* Scans in JET ELMy H-modes, IAEA - 20th Fusion Energy Conference, Vilamoura, Portugal, 4th Nov 2004

Trace tritium: non-dimensional (ρ^* , β , ν^* **) experiments**

 Set of 5 discharges prepared in D-D

- 3 point ρ^* scan
- 2 point β scan
- 2 point v^* scan
- Reran with a T puff (2.5-5mg over 80ms)

 Line integrated D-T and D-D neutrons measured with 10 horizontal and 9 vertical cameras

Trace tritium: fitting diffusivity and advection

D. C. McDonald *et al*, Particle and Energy Transport in Dedicated ρ^* , β and v^* Scans in JET ELMy H-modes, IAEA - 20th Fusion Energy Conference, Vilamoura, Portugal, 4th Nov 2004

Trace tritium: ρ* scan in Type I ELMs

•Low triangularity shape. Current varied in the range $I_p = 2 - 2.75MA$

•3 point scan with inner (x=0-0.45) and outer (x=0.65-0.85) measurements

$$D_{inner}/B_0 \propto
ho^{*3.22\pm0.62}$$

•gyro-Bohm like behaviour

$$D_{outer}/B_0 \propto
ho^{*1.90\pm0.38}$$

Bohm like behaviour

•Both results are consistent with the 1997 discharges

Trace tritium: β and v^* scan results

Summary of experimental results

•The ρ^* , β and ν^* results for thermal transport may be summarised as

•The ρ^* , β and ν^* results for trace T transport may be summarised as

•With a weaker, Bohm like ρ^* scaling in the outer region x=0.65-0.85

Positive effect of β on trace T confinement. Similar behaviour seen for trace helium [C C Petty et al (2004)]

Transport modelling for trace tritium discharges

D. C. McDonald *et al*, Particle and Energy Transport in Dedicated ρ^* , β and v^* Scans in JET ELMy H-modes, IAEA - 20th Fusion Energy Conference, Vilamoura, Portugal, 4th Nov 2004

Re-analysis of the Multi-machine Database

•PCA "Errors in variables methods" now being used to determine scaling JG04.205-80 1.0 0.4 0.8 β dependence 0.3 found to be strongly $\alpha_{\upsilon*}$ α_{β} 0.6 dependent on errors 0.2 in P and W 0.4 •The exponent of β , α_{β} , lies in the range -0.1 **0.7** < $\alpha_{\rm B}$ < **0** 0.2 Error range given by Tokamaks • v^* correlates with β 0.0 0.0 ¹⁰δP (%) dependence 20 0 -0.2 -0.1

See Cordey et al, P3-32

D. C. McDonald *et al*, Particle and Energy Transport in Dedicated ρ^* , β and v^* Scans in JET ELMy H-modes, IAEA - 20th Fusion Energy Conference, Vilamoura, Portugal, 4th Nov 2004

Consequences for ITER

•For ES model, at operating point, +2% τ_E at β_N = 1.8

•However, scaling gives +50% τ_E at β_N = 3.0

•Other ES models give even higher $\tau_{\rm E}$

•POPCON plots show access to very high Q for β_N = 3.0

•Impact of higher particle confinement, particularly for He ash, at $\beta_N = 3.0$ remains to be assessed

Summary of theory and modelling implications

results of scans

$$B au_E \propto
ho^{*^{-3.1}} eta^{-0.0} v^{*^{-0.35}}$$
 •ES, g-Bohm $B/D_T \propto
ho^{*^{-3.2}} eta^{+0.5} v^{*^{+0.5}}$ •EM, g-Bohm

•ES models, such as MMM, describe energy confinement

Particle model based on neo-classical transport in stochastic
 EM fields does describe the EM beta dependence

•Candidates exist (ITG...), but describing the different particle/energy transport (β and $D_T/\chi=0.3-1.5$) in one model remains a challenge for theory.

•Improvement in the predicted τ_E for ITER would be substantial at $\beta_N \ge 3.0$. Particle effects to be assessed.

D. C. McDonald *et al*, Particle and Energy Transport in Dedicated ρ^* , β and v^* Scans in JET ELMy H-modes, IAEA - 20th Fusion Energy Conference, Vilamoura, Portugal, 4th Nov 2004