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~ 1 mm ch. spacing
33 - 35 ms intervals
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Densities > 1021 m-3

No core particle sources or sinks

Ti(r) = Te(r) unchanged while density peaks

Monotonic q-profile, small Shafranov shift

No external torques, significant fast ions, 
or impurity content

Internal Transport Barrier Produced by Moving ICRH Off-Axis

ITB Forms



Quantitative Simulations of TEM Turbulence in C-Mod ITB 

no adjustable parameters

GS2 nonlinear gyrokinetic code [Dorland, Kotschenreuther, Liu]

Gyrokinetic Vlasov, time advancing Spectral in ⊥ direction

Local flux-tube, cross-section 30-60 ρi

General magnetic geometry

Lorentz collisions

All species fully gyrokinetic 

Our general interface to experiments [GS2_PREP]  used 
for several years at TFTR, JET, DIII-D, JT60-U, C-Mod
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Collection of runs prepared automatically, viewed as profile 

Linear and non-Linear (electrostatic) results benchmarked 

Detailed comparisons with experiments performed toward 
understanding ITB formation and control with RF heating
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Toroidal ITG Modes Suppressed by Off-Axis Heating
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Ware pinch peaks density
where ITG modes suppressed

C-Mod has no core particle 
sources:
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Nonlinear turbulence
simulations show negligible
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Ware pinch alone accounts for
twice observed rate of density 
rise
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2 MW off-axis + 0.6 MW on-axis ICRH,
Double Barrier, 1.34 sec (late in time)
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Phase velocity in electron
direction
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density gradient
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Gradients in ITB Initially Follow ITG Stability Boundary,
Allowing Ware Pinch to Peak Density 

a/
L

n

0.0 0.5 1.0 1.5 2.0
-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Trajectory of ITB (ρ=0.4)

in
cr

ea
si

n
g

 γ

weak dependence

on LT

ITG/TEM

ITG

Time (s) = 

a/LT

1.401.35

1.30

1.25

1.05

1.10

1.00

0.95

0.90

0.85

0.80

0.70

0.75

1.15

1.
20

increasing γ

STABLE

TEM 

Several hundred linear GS2 runs 
trace out stability boundaries
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On-axis ICRH increases 
temperature starting 1.25 sec 

In late phase of discharge,
toroidal rotation is small,
ExB shear unimportant

ITB Formation Ceases at Each Radius with TEM Onset 

Density gradient scale length 
comes to steady state with
TEM onset (~ 1.0 sec)

Deff ceases to drop when
TEM goes unstable (~ 1.0 sec)
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Modified "Cyclone Base Case"
vei a/vthi = 0.01
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Nonlinear simulations reveal new upshift in TEM critical density gradient

increasing density gradient
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NL Shift

Pure TEM linearly unstable, but nonlinearly 
quasi-stable, for a range of density
gradients

Analogous to Dimits shift in temperature
gradient for ITG turbulence 
[A. M. Dimits et al., Phys Plasmas (2000)] 

Results from explosive growth of
zonal flows, which are weakly damped 

γZF ∝ δφprimary φZF ∝ exp

�

expγt
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[Rogers, Dorland, Kotschenreuther, Phys. Rev. Lett. (2000)]
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Ultimately, TEM outflow balances Ware Pinch: Locally stable equilibrium

ΓWARE
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Simulations match experimental 
particle and energy transport in 
ITB within the uncertainties
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Recently, Full available source power maintained steady ITB
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Higher temperature again destabilizes TEM

10 kHz - 5 MHz
0.5 - 12 cm-1

line-integrated
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n

� �

%

�

1.22 sec in ITB (ρ=0.4) 

Poloidal Wavenumber [cm-1]

0.0

0.1

0.2

0.3

0.4

0.5

0 2 4 6 8

GS2 at θ=0
PCI at θ=900 (A.U.)

G
S2

�ñ n
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Encouraging preliminary comparison of GS2 and PCI in TEM frequency range 

PCI observes wavelengths and frequencies similar to GS2 prediction.
GS2 nearly correct on increase of fluctuation power during on-axis ICRH.
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Conclusions

Ware pinch sufficient to account for C-Mod ITB formation when off-axis
heating broadens T(r), suppressing ITG modes  

As density peaks, TEM driven unstable

When TEM flux balances Ware pinch at each radius, stable equilibrium

GS2 simulations of particle and energy flux in ITB match experiment

On-axis heating increases temperature, increasing TEM particle flux
consistent with gyrobohm scaling, collisionality plays 2nd order role

At same time, Ware pinch decreases with temperature 

 

New nonlinear upshift of TEM critical density gradient, due to zonal flows

GS2 spectrum and increase in density fluctuations in rough agreement
with Phase Contrast Imaging (preliminary) 
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