



# Internal kink mode stability in the presence of ICRH driven fast ions populations

F. Nabais, D. Borba, M. Mantsinen, M.F. Nave,

S. Sharapov and JET-EFDA contributors







#### Outline

| Fast ions                                                                              | $\rightarrow \delta W_{MHD}$ | $\rightarrow \delta W_{MHD} + \delta W_{MHD}$ | $\mathcal{W}_{HOT}$               |
|----------------------------------------------------------------------------------------|------------------------------|-----------------------------------------------|-----------------------------------|
| Effect of ICRH driven populations on<br>Internal kink mode n=1, m=1                    |                              | /<br>MHD energy<br>functional                 | Fast ions<br>energy<br>functional |
| Perturbative method<br>(F. Porcelli <i>et al</i> . Phys.<br>Plasmas,1 (3), 470 (1994)) | Quantitative<br>results      | Sawteeth                                      |                                   |
| Variational method<br>(R. White et al. Phys.<br>Fluids B 2, 745 (1990))                | Qualitative<br>results       | Sawteeth,<br>Fishbones                        |                                   |
|                                                                                        |                              |                                               | INSTITU                           |

**Objective : Explain experimental observations in JET** 







#### Perturbative method

$$\longrightarrow \delta W = \delta W_{MHD} + \delta W_{HOT} \qquad \gamma = \gamma_I + \gamma_{HOT}$$
eigenfunction perturbation

Relevant equations, which include Finite Orbit Width effects,

$$\delta W_{HOT} = \delta W_{HOT}^{ad} + \delta W_{HOT}^{na}$$

(F. Porcelli *et al*. Phys. Plasmas,1 (3), 470 (1994))

$$\delta W_{HOT}^{ad} = \frac{2\pi^2}{\Omega m^2} \sum_{\sigma} \int dE d\mu dP_{\varphi} \left(\xi_{\perp} \cdot \nabla \psi\right) \frac{Ze}{c} \frac{\partial F}{\partial P_{\varphi}}$$

Adiabatic part - destabilizing







#### Perturbative method

$$\delta W_{HOT}^{na} = -\frac{2\pi^2}{\Omega m^2} \sum_{\sigma} \int dEd\,\mu dP_{\varphi} \tau_b (\omega - n\,\omega_*) \frac{\partial F}{\partial E} \sum_{p=-\infty}^{\infty} \frac{\left|Y_p\right|^2}{\omega + n\left\langle \dot{\varphi} \right\rangle + p\,\omega_b}$$

Non-adiabatic part - stabilizing

CASTOR-K  $\implies \delta W_{HOT}$ 

Safety factor on axis

Fast ions temperature

Location of the ICRH resonant layer

Fast ions radial profile

$$\omega << \omega_D$$
  $\gamma_{HOT} = -\frac{1}{2\gamma} \frac{\text{Re}\,\delta W_{HOT}}{E_k}$ 

INSTITUTO SUPERIOR TÉCNICO Centro de Fusão Nuclear





#### Effect of the ICRH fast ions on sawteeth







# Application to experiments

Experiments with low plasma densities







# Application to experiments

 $\bullet$  Sawteeth destabilization coincides with an increase in  $T_{\rm HOT}$ 

Numerical results show:

- The stabilizing effect of the non-adiabatic part of  $\delta W_{HOT}$  decreases as  $T_{HOT}$  increases, so this mechanism for sawtooth stabilization is weakened.
- The destabilizing effect associated with the adiabatic part of  $\partial W_{HOT}$  is increased.
- The non-adiabatic part of  $\delta W_{HOT}$  is dominant.

F. Nabais - Vilamoura - November 2004







#### Variational method

$$\delta W_{MHD} + \delta W_{HOT} - \frac{8i\Gamma[(\Lambda^{3/2} + 5)/4] [\omega(\omega - \omega_{*i})]^{1/2}}{\Lambda^{9/4} \Gamma[(\Lambda^{3/2} - 1)/4] \omega_A} = 0$$

(R. White et al. Phys. Fluids B 2, 745 (1990))

Solutions of the internal kink dispersion relation:

(Ideal limit)

**Kink Branch** Sawteeth Low frequency (B. Coppi and F. Ion Branch Porcelli P. R.L, 57, Low frequency **ω ≈ ω**<sub>\*i</sub> 2272 (1986)) (diamagnetic) fishbones (L. Chen et. al P. R.L 52, 1122 (1984)) High frequency Fishbone Bran ω≈<ω<sub>Dhi</sub>> Fishbone Bran **Fishbone Branch** INSTITUTO SUPERIOR (precessional) fishbones TÉCNICO Centro de Fusão Nuclear





### Determination of the regions of stability

Stability mainly by

Ideal (MHD) growth rate  $\gamma_I \equiv -\omega_A \delta W_{MHD}$  $\gamma_{I}$ 

governed  $\left\{ \mathcal{O}_{*i} \right\}$  Diamagnetic frequency

Fast particles beta

#### Marginal equation $\omega$ =real, ideal limit, ICRH population

$$\gamma_{I} = \frac{3}{4} \left[ \frac{\omega}{\langle \omega_{D} \rangle} \left( \frac{\omega}{\langle \omega_{D} \rangle} - \frac{\omega_{*i}}{\langle \omega_{D} \rangle} \right) \right]^{\frac{1}{2}} \left( \frac{\omega}{\langle \omega_{D} \rangle} \right)^{-\frac{3}{2}} \left[ \frac{1}{2} + \frac{\omega}{\langle \omega_{D} \rangle} + \left( \frac{\omega}{\langle \omega_{D} \rangle} \right)^{\frac{3}{2}} \operatorname{Re} Z \left[ \left( \frac{\omega}{\langle \omega_{D} \rangle} \right)^{\frac{1}{2}} \right] \right]$$

$$\beta_{h} = \frac{3}{4} \frac{\varepsilon \omega_{A}}{\pi^{1/2} \langle \omega_{D} \rangle} \left[ \frac{\omega}{\langle \omega_{D} \rangle} \left( \frac{\omega}{\langle \omega_{D} \rangle} - \frac{\omega_{*i}}{\langle \omega_{D} \rangle} \right) \right]^{\frac{1}{2}} e^{\omega / \omega_{D}} \left( \frac{\omega}{\langle \omega_{D} \rangle} \right)^{-\frac{5}{2}}$$







Centro de Fusão Nuclear







# Magnetic spectrogram from JET



F. Nabais - Vilamoura - November 2004





#### Variation of the relevant parameters



In between crashes the q=1 surface expands



 $\beta_h \longrightarrow \gamma$ 



In between crashes the ion bulk profile peaks

 $f_{*i}$ : 3 kHz  $\longrightarrow$  20 kHz











## Variation of the regions of stability











## **Regions of stability**











# Solutions of the dispersion relation







#### Magnetic perturbation for an hybrid fishbone









#### Modes and regimes

#### Ion mode



Fishbone mode

(Gorolenkov *et al.* "Fast ions effects on fishbones and n=1 kinks in JET simulated by a non-perturbative NOVA-KN code, this conference)

Coalescent ion-fishbone \_\_\_\_\_\_ mode



Low frequency fishbones

High frequency fishbones

Hybrid fishbones

Both types of fishbones occuring simultaneously







# Summary

#### Perturbative Method

- Accurate calculation of  $\gamma_{\text{HOT}}$  for a realistic geometry
- Only for the "kink mode"

Stabilizing term vanishes for high fast ions temperatures

#### Variational Method

- All branches of the dispersion relation
- Predicts changes in instabilities behaviour knowing the relevant parameters
- Simplified geometry and fast ions' distribution function, suitable only for a qualitative approach

Hybrid fishbones and both types of fishbones occuring simultaneously

