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MOTIVATION

• After L-H Transition, the plasma develops a steep pressure gradient

• Enhancement factor H in energy confinement for discharge
in very strongly correlated with height of pressure pedestal

• What is the maximum sustainable pressure gradient ? 

Paper addresses

• Equilibrium of H-mode (Guzdar, Mahajan, Yoshida)
• Stability of pedestal to non-curvature driven modes (Dorland, 
Rogers)
• Integrated modeling of pedestal and ELMs (Bateman, Kritz, Pankin, 
Voitsekhovitch, Onjun, Snyder, McElhenny, MacDonald)
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THEORY FOR H-MODE  EQUILIBRIUM
TWO-FLUID HALL-MHD EQUATIONS

S. M. Mahajan and Z. Yoshida, PoP 7, 635, 2000
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EQUILIBRIUM-2
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EQUILIBRIUM-3
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j 1,  Ohm's Law (electrons)
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Double Beltrami conditions

j j jUΩ = µ

Such a condition for fluid vorticity was derived by Beltrami. In plasma physics force-free magnetic 
field states are the Woltjer-Chandrashekar states(1956-1958) or Taylor states (1974)
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EQUILIBRIUM-4
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EQUILIBRIUM-5
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EQUILIBRIUM-6

For constant density case
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EQUILIBRIUM-7
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EQUILIBRIUM-8
COMPARISON WITH DATA FROM JT-60U
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EQUILIBRIUM-9
COMPARISON WITH DATA FROM JET
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EQUILIBRIUM-10
COMPARISON WITH DATA FROM DIII-D

Snyder et al., Nuc. Fusion  44, 320 (2004)

DIII-D, BT=2 T, Ip=1.225 MA, R=1.685, a=0.603, κ=1.77,  δ=0.0
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STABILITY TO NON-CURVATURE 
DRIVEN MODES IN THE PEDESTAL

Main Focus:

• What are the dominant linear instabilities in the H-mode edge pedestal ?

Main Results:

• Strong Er shear of H-mode pedestal is not always stabilizing:

Even without magnetic curvature, there are at least three linear instabilities that are potentially
Destabilizing by ExB shear and plasma gradients

• These modes all require finite curvature in VE and/or plasma gradients to be unstable

• Potentially stronger than curvature driven modes since Lp<< R

• Not present in simulations with spatially constant plasma gradients and/or spatially constant 
ExB shear
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PEDESTAL STABILITY-2

Methods of Analysis

•Gyrokinetic GS2 simulations and analytic calculations of a simple slab model for H-mode 
that includes:

-- spatially varying ExB shear and plasma gradients with typical magnitudes and scales for pedestal
VE ~ V*e ~ -V*I and pedestal widths ∆ ~(10-20)ρi

-- Magnetic shear

-- Electromagnetic and kinetic effects (eg Landau damping , FLR)

But excludes (for now)

-- Magnetic curvature

-- Poloidal variation and othe rtoroidal geometry effects

--Parallel flows
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PEDESTAL STABILITY-3

Summary: Three Main Modes-I

1. Kelvin-Helmholtz Instability

-- Driven by shear in ExB velocity VE
-- Magnetic shear and V*i are stabilizing

Very near marginal stability for typical H-mode parameters. More detailed
analysis that includes toroidal effects is currently underway

KH mode γ vs ky/kx KH mode γ vs V*iKH mode γ vs s 
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kyρi=0.2, Ti=Te, s=0, βe=10-4 kyρi=0.2, Ti=Te, q=3.5, φ0=1.5x10-3, γ0 growth rate for s=0



PEDESTAL STABILITY-4
Summary: Three Main Modes-II

2. “Tertiary” Mode

-- An adiabatic, electrostatic mode with high k|| and 
-- Driven by dTidx
-- Insensitive to magnetic shear
-- FLR effects stabilizing

Also near marginal stability for typical H-mode pedestals due to FLR effects. 
Further work on to include toroidal effects in progress

k 1/⊥ > ∆

Tertiary Mode γ vs (a) ky for ηi=      (squares), ηi=3.8 (triangles) and (b) ∆t~(Lρs)1/2∞
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kyρi=0.2, Ti=Te
γ0= ∆tVE
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PEDESTAL STABILITY-5
Summary: Three Main Modes-III

3. Drift-wave

Aside from the ExB shear, similar to the mode discussed in literature decades ago
-- Driven by plasma gradients and (for typical H-mode parameters) electron Landau damping
--
-- Requires spatial variations in ExB shear or plasma gradients (like those typical of the pedestal)

to be linearly unstable in the presence of magnetic shear
-- Electromagnetic effects are stabilizing

Robustly unstable for for all parameters relevant to edge pedestals. Strong candidate for 
driving transport in the H-mode edge for toroidal and linear devices

s || sk ~ (0.2 5) and k ~ k /⊥ρ − β ρ ∆

IAEA Meeting, November 2004

kxρi=0.2, Ti=Te

βe=4x10-4, VE= 222.4

V*in=-399.6, V*iT=-16.5

(ω
,γ

)v
th

/R

γv
th

/R

kyρs kyρs βe

γv
th

/R



Pedestal and ELM Models Used in 
Integrated Modeling

• Objective:
– Develop model for integrated simulations, which includes pedestal and core

• Height, width and shape of the pedestal
• Frequency and effect of ELMs 
• Effect of pedestal and ELMs on the core plasma profiles

• Progression of increasingly sophisticated models that have been 
developed and/or used by Lehigh group:

– Pedestal height model developed and used to provide boundary conditions 
in simulations of evolution of temperature and density profiles in H-modes

• Model calibrated against pedestal data
• Resulting density and temperature profiles compared with experimental profiles

– Pedestal and ELM model used to investigate physics of the ELM cycle
• Results compared with JET data

– Pedestal and ELM model developed to investigate pedestal formation and 
evolution of profiles during the ELM cycle

• Model calibrated with DIII-D data and results compared with DIII-D and JET data
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Static Pedestal Model Used to 
Provide Boundary Conditions

• Separate models applied for the core and the H-mode pedestal 
– PEDESTAL model used is available as NTCC Module Library Module  

http://w3.pppl.gov/NTCC
• Models described in papers by T. Onjun et al. Phys. Plasmas 9 (2002) 5018 

and G. Cordey et al., 2002 IAEA, Nucl. Fusion 43 (2003) 670
– Multi-Mode or GLF23 model used for core transport

• These simulations do not have time-dependent model for ELM cycle

• Simulations with pedestal model boundary conditions have been 
carried out and compared with data

– Profiles agree with data as well as when experimental data boundary 
conditions are used

• G. Bateman et al., Phys. Plasmas 10 (2003) 4358

• Simulations of burning plasma experiments 
– Predicted performance of burning plasma experiment depends 

on the choice of core and pedestal models
• G. Bateman, et al., Plasma Phys. Control. Fusion 45 (2003) 1939.
• J. Kinsey, et al., Nucl. Fusion 43 (2003) 1845.
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Model in which MHD Criteria are Used to 
Initiate ELM crashes

• Implemented by V. Parail et al. in the JETTO code and used by 
the Lehigh group and researchers at JET

– V. Parail et al., Plasma Physics Reports 29 (2003) 539
– Two criteria to trigger ELMs:  Pressure-driven ballooning mode and 

current-driven peeling mode
• ELM triggered by ballooning mode if normalized pressure gradient, 

α, exceeds the critical pressure gradient, αc, anywhere in pedestal

• ELM triggered by peeling mode if the current density, J||, satisfies

Details in article by H. R. Wilson et al., Nucl. Fusion, 40 (2000) 713
– Criteria calibrated using HELENA and MISHKA MHD stability codes

• Trigger criteria affect frequency of ELMs
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Results of Dynamic Pedestal and ELM Model
• Neoclassical transport used in the pedestal

– Determines height of temperature and density pedestal
• Transition from 1st to 2nd stability region observed in triangularity scan

– T. Onjun et al., Phys. Plasmas 11 (2004) 3006
• Pedestal height increases with heating power

– T. Onjun et al., Phys. Plasmas 11 (2004) 1469
• Transition from ballooning to peeling mode ELM crash trigger observed in 

simulations of some discharges
– T. Onjun et al., to appear in Phys. Plasmas (2005)

• Effect of isotope mass on H-mode pedestal and ELMs
– In collaboration with V. Parail and JET Team

Deuterium Tritium

JET Discharge 43154 43003
Simulation 12 14

Experiment 10 14
Simulation 9 3

Experiment 6 - 18 3 - 5

ELM 
Frequency

(Hz)

Pedestal 
Pressure

(kPa)
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Pedestal and ELM Model Developed at Lehigh
• Single transport model used in plasma core and pedestal

– Local self-consistent calculation of plasma profiles from magnetic axis 
to the base of the pedestal

– Currently implemented in the ASTRA code
• Model predicts the height, width, and shape of the H-mode pedestal and 

frequency of the ELMs
– Started with model developed by G. Pacher, H. Pacher, G. Janeschitz, et al.,

Nucl. Fusion 43 (2003) 188
– Initial development and application of model by A. Pankin, I. Voitsekhovitch

et al., submitted to Plasma Physics and Controlled Fusion (2005)
• Transport model consists of a combination of

– ITG/TEM ion modes (Weiland) and resistive ballooning (Guzdar/Drake)
– ETG driven by short wavelength electron drift modes (Horton/Jenko)
– Neoclassical transport (NCLASS)

• Flow shear stabilization of local anomalous transport
– Modes with different wavelengths stabilized at different rates

• ELM crashes triggered by pressure-driven ballooning or current-driven 
peeling mode analytic instability criteria
IAEA Meeting, November 2004



Transport Model Used for Core and Pedestal
• Ion drift mode turbulence within the pedestal suppressed by ExB

flow shear, but not the short wavelength ETG mode turbulence

χi,e ion or electron thermal diffusivities
χITG/TEM ion drift mode (ITG/TEM) diffusivity without flow shear (Weiland)
χRB resistive ballooning mode diffusivity without flow shear
ωE×B flow shear rate
τITG/TEM turbulence correlation time for ion drift mode
τRB turbulence correlation time for resistive ballooning mode 
CITG/TEM,RB calibration coefficients
χi

neoclassical neoclassical ion thermal diffusivity (NCLASS)
χe

ETG ETG mode electron thermal diffusivity
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Scaling of Pedestal Temperature and ELM Frequency

• Transport model calibrated using experimental data for DIII-D 98889 
provided by Tom Osborne at GA

– Noise reduced by overlaying data from consecutive ELM cycles
• Once flow shear large enough, the critical normalized pressure gradient 

for triggering ELM crashes (αc) is most important calibration constant
• Simulations follow current profile diffusion, including bootstrap current

– Prescribed particle density and power density profiles in these simulations
• Model in ASTRA code has been used to study scaling of pedestal 

temperature and ELM frequency 
– Many of the trends are consistent with experimental data
– Pedestal temperature decreases with pedestal density:

Tped ~ 1/nα
ped ; α >1

– Pedestal temperature increases slowly with increasing toroidal magnetic 
field (with fixed plasma current)

– ELM frequency decreases with magnetic field
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Effect of Heating Power on Pedestal and ELMs
• Simulations carried out for scan of discharges with different auxiliary 

heating power
• ELM frequency and pedestal temperature increase with power

– Consistent with data [J.G. Cordey et al., Nucl. Fusion 43 (2003) 670]
– Effect caused by changes in pedestal current density and 

resulting magnetic shear
– Pedestal temperature increases with heating power because of 

time-dependent inductive effects as current density rebuilds 
in pedestal between ELM crashes
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Simulation of Ti and Te Profiles

• Lehigh model for pedestal and ELMs used in ASTRA simulations of 
DIII-D and JET discharges
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CONCLUSIONS
Equilibrium
• Double-Beltrami H-mode equilibrium with constraint for pressure gradient determined  
by  ideal ballooning mode stability yields unique prescription for pressure pedestal width 
and height. 
• Comparison with experimental data shows promise

Stability
• Linear drift-wave eigenmodes robustly unstable in the H-mode edge region despite
ExB and magnetic shear effects, hence potentially main driver of transport in the (H-
mode) edge of toroidal or linear devices.
• Linear modes  not stabilized by magnetic shear (as is widely believed) because
eigenmode well-localized radially by ExB shear and profile variation.
• Result  verified by GS2(gyrokinetic) simulations and analytic calculations and consistent 
with  past work on the universal instability in the literature going back many decades.

Integrated Modeling
• The Lehigh University Fusion Research Group developed and tested theory-based 
edge models  in the JETTO and ASTRA codes to predict the height of the H-mode 
pedestal as well as the frequency of ELM crashes.
• Simulations using these edge models, validated using experimental data from JET and 
DIII-D, reproduce experimentally observed scalings as a function of heating power, 
magnetic field strength, plasma density, triangularity, and isotope mass
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