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® Transport Barriers improve confinement E
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— iImportant to assess their stability =
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® Transport Barriers are often associated
with low magnetic shear and sheared 0.0
radial electric fields
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® The standard tool for stability studies - the ballooning theory - fails
In these circumstances

® \We present a complementary approach to overcome this

® Applications to high-n MHD ballooning modes and micro-
instabilities



LIMITATIONS ON BALLOONING THEORY

Theory requires A/B << 1,

A: breaking of degeneracy between mode resonant surfaces
(mrs), m = nq (r,,), due to profile variation

A(D 1 ow 11

® ©®OX L nqg’

B: toroidal coupling between modes on adjacent surfaces

B=C'~ iexp 1
R s| (for MHD)

® At low magnetic shear, s, theory fails, unless n — « fast enough!

® Toroidal rotation shear = Doppler-shift, ® — o + nQ'x
A 1 dQ 1 dQ (ie e O )
Q dx g dg

= Theory fails unless fzq <0(1/n)



RECURRENCE RELATION AT LOW S

® Alternative approach: recurrence
relation between amplitudes of
‘modelets’ located at each mrs

— not simple Fourier modes

® For low s, gives eqn for
eigenvalue A and spectrum, a,,

(L—-x_ )a_+C!(a

m+1

® Can deduce coefficients from local ballooning space dispersion
relation as a function of x and ballooning parameter k.

L—A(X)+C"(x)cosk =0
— letx<>m/ng'=x,,, e"" < a

® Use analytic solutions of ballooning egn at low s; in general

= CT ~exp (-1/|g]), € oc SP .
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APPLICATION (1): HIGH-N MHD BALLOONING

® s - a equilibrium with favourable average curvature o« a/R (1 - 1/g?)

[y—v.]a, +C(a,,,S, )@, +2a,.]/2=0

Ym = Yol Sm); Coca, exp(—l/\sm\)/sm
s-a diagram
1.0p
® Near ITB at - ' - t:f:clfz
o = Ol SECh? (X/L.) 08
q = Omin (1 + x2/2a2) Unstable

0.6

® Discrete mrs, X,
lie on trajectory in s - o space

0.4

controlled by o, L+, 1 02
— avoid unstable region
— or step across using discreteness; : 0.5 Lo s 20
easier if q,,, IS low order rational . *



® Always unstable if a/R — 0, but can map out stable operating
diagram for (o.,,,, L/r) at finite a/R
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® Can sustain high pressure, Ap «< a...., L., if barrier narrow

max

® Self-consistent bootstrap current Jgg (o, a/R)) modifies shear
— stable regimes even if s # 0 when barrier absent
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APPLICATION (2): DRIFT WAVES - TOROIDAL ITG

® Long wavelength,b, = k% p? << 1, flat density (Romanelli & Zonca,
Phys Fluids B5 (1993) 4081)

— parameter b; = b, (R/L;)Y?,
— toroidal branch

— find different poloidal mode structures and local eigenvalues for
s> 0and s <0, eg either side of q,,,

— involve even, odd and mixed parity (in poloidal angle, 6) modes

® Coupling coefficient CT ~ exp (-1/g), € ~ b3 st2, for most strongly
coupled mode (mixed parity)

— weak coupling at low s or by,

— but, nevertheless, requires very long wavelength to have
negligible coupling near q,,,,,! - say n ~ 6 for p. = 1/256

® There is also a slab branch: &~ b¥?s**



Toroidal coupling coefficient, CT(x,)
evaluated at x,, the nearest resonant
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—— Mixed Party Toroidal Branch
—— Slab Branch

surface to q,;,, for ITG modes as a 5
function of b, = (k p,)? © 010
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® Different eigenmodes for a,, spectrum
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® Narrowing of spectrum of a_ as mode centre nears q,;, (quadratic variation of 1/L)
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TOROIDAL ROTATION SHEAR: MHD BALLOONING

® Analytic solution of Doppler-shifted (y — vy - In€2'X) recurrence
relation for small (o, s) and quadratic radial variation of o

2.05.\.‘ <« ’ymax
5

1.5F \‘-.,

I x}\
1.0 «—(V)

I e e« analytic . do
0.5 —— asymptotic for large € | =—

40
ol L ; . 2 L 2 standard ballooning theory

~

Q5™
® Continuous evolution from stationary plasma result: y = v, (K)

to sheared rotation result: y = (y (k))  (Waelbroeck & Chen, Phys
Fluids B 3 (1991) 601)

® Transition at Q, ~ Q™ ~ 0 (1/n)
— transition sharper as A2 = nqsr/L. increases
— stationary result rapidly becomes invalid UKAEA o



COMPLEMENTARY NUMERICAL 2D SOLUTION

® o ~ s ~ 0(1) with stronger flow shear using numerical 2D
eilgenmode technique

L4 ° ® 115:1.82
® Fora=2,s=1,recover result of °*
time-dependent solution by 0,201 ’
Miller et al (Phys Plasmas 2 (1995) .
3676) when n — o g0
0.10- o °
® Example:a=1,s=1 .
0.05[ ¢ %o 0 © o.o... . . I
— Finite n: y drops less rapidly o e, et %

as n decreases 0 0.2 0'4dg/dq 0.6 0.8

— Can pass through another unstable
region before finally stabilising at dQ/dg=1



CONCLUSIONS

® New formalism for stability calculations at low s, relevant to ITBs
— recurrence relation between ‘modelets’

® Ballooning mode radial structures tend to narrow at low s and near
qmin

® MHD ballooning modes can be stable in ITBs with high pressure if
they are sufficiently narrow (due to favourable average curvature)

® |ITG modelets can be weakly coupled near q,,,,, but only if very long
wavelength

— different poloidal mode structures and eigenvalues on either
side of g, SO ITB acts as a ‘barrier’ to mode structures

® Toroidal rotation shear: v, reduces rapidly for dQ/dgq ~ 0(/n),
finally stabilising for dQ2/dg=1, iev ~ sv,

= limited validity of standard (stationary) ballooning calculations
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