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INTRODUCTION

Transport Barriers improve confinement
– important to assess their stability

Transport Barriers are often associated
with low magnetic shear and sheared
radial electric fields
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The standard tool for stability studies - the ballooning theory - fails 
in these circumstances

We present a complementary approach to overcome this

Applications to high-n MHD ballooning modes and micro-
instabilities



LIMITATIONS ON BALLOONING THEORYLIMITATIONS ON BALLOONING THEORY

Theory requires A/B << 1,
A: breaking of degeneracy between mode resonant surfaces 
(mrs), m = nq (rm), due to profile variation

B: toroidal coupling between modes on adjacent surfaces

(for MHD)
At low magnetic shear, s, theory fails, unless n → ∞ fast enough!

Toroidal rotation shear ⇒ Doppler-shift, ω → ω + nΩ′x

⇒ Theory fails unless
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RECURRENCE RELATION AT LOW SRECURRENCE RELATION AT LOW S

Alternative approach: recurrence
relation between amplitudes of 
‘modelets’ located at each mrs

– not simple Fourier modes

For low s, gives eqn for
eigenvalue λ and spectrum, am

Can deduce coefficients from local ballooning space dispersion 
relation as a function of x and ballooning parameter k.

– let x ↔ m/nq′ ≡ xm ,  eikm ↔ am

Use analytic solutions of ballooning eqn at low s; in general
⇒ CT ~ exp (-1/|ε|), ε ∝ sp
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APPLICATION (1): HIGHAPPLICATION (1): HIGH--N MHD BALLOONINGN MHD BALLOONING

s - α equilibrium with favourable average curvature ∝ a/R (1 - 1/q2)

Near ITB at qmin:
α = αmax sech2 (x/L*)
q = qmin (1 + µ x2/2a2)

Discrete mrs, xm

lie on trajectory in s - α space
controlled by αmax, L*, µ

– avoid unstable region
– or step across using discreteness; 

easier if qmin is low order rational
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s-α diagram
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Always unstable if a/R → 0, but can map out stable operating
diagram for (αmax, L*/r) at finite a/R

Can sustain high pressure, ∆p ∝ αmax L*, if barrier narrow

Self-consistent bootstrap current JBS (α, a/R)) modifies shear 
⇒ stable regimes even if s ≠ 0 when barrier absent
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APPLICATION (2): DRIFT WAVES APPLICATION (2): DRIFT WAVES -- TOROIDAL ITGTOROIDAL ITG

Long wavelength,                << 1, flat density (Romanelli & Zonca,  
Phys  Fluids B5 (1993) 4081)  

⇒ parameter bT = bs (R/LT)1/2, 
– toroidal branch
– find different poloidal mode structures and local eigenvalues for 

s > 0 and s < 0, eg either side of qmin

– involve even, odd and mixed parity (in poloidal angle, θ) modes

Coupling coefficient CT ~ exp (-1/ε), ε ~ bT
1/3 s1/2, for most strongly 

coupled mode (mixed parity)
– weak coupling at low s or bs,
– but, nevertheless, requires very long wavelength to have 

negligible coupling near qmin! - say n ~ 6 for ρ* = 1/256

There is also a slab branch: 

2
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Different eigenmodes for am spectrum

Narrowing of spectrum of am as mode centre nears qmin (quadratic variation of 1/LT) 

Toroidal coupling coefficient, CT(x1) 
evaluated at x1, the nearest resonant 
surface to qmin, for  ITG modes as a 
function of bs = (k⊥ρs)2
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TOROIDAL ROTATION SHEAR: MHD BALLOONINGTOROIDAL ROTATION SHEAR: MHD BALLOONING

Analytic solution of Doppler-shifted (γ → γ - inΩ′x) recurrence 
relation for small (α, s) and quadratic radial variation of α

Continuous evolution from stationary plasma result: γ = γmax (k)
to sheared rotation result: γ = 〈 γ (k)〉 (Waelbroeck & Chen,  Phys 

Fluids B 3 (1991) 601)
Transition at   ~ 0 (1/n)

– transition sharper as Λ2 = nqsr/L* increases 
– stationary result rapidly becomes invalid
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COMPLEMENTARY NUMERICAL 2D SOLUTIONCOMPLEMENTARY NUMERICAL 2D SOLUTION

α ~ s ~ 0(1) with stronger flow shear using numerical 2D 
eigenmode technique

For α = 2, s = 1, recover result of 
time-dependent solution by
Miller et al (Phys Plasmas 2 (1995)
3676) when n → ∞

Example: α = 1, s = 1

– Finite n: γ drops less rapidly
as n decreases

– Can pass through another unstable
region before finally stabilising at
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CONCLUSIONSCONCLUSIONS
New formalism for stability calculations at low s, relevant to ITBs

– recurrence relation between ‘modelets’

Ballooning mode radial structures tend to narrow at low s and near 
qmin

MHD ballooning modes can be stable in ITBs with high pressure if 
they are sufficiently narrow (due to favourable average curvature)

ITG modelets can be weakly coupled near qmin, but only if very long 
wavelength

– different poloidal mode structures and eigenvalues on either 
side of qmin so ITB acts as a ‘barrier’ to mode structures

Toroidal rotation shear: γMHD reduces rapidly for   , 
finally stabilising for , ie v ~ svA

⇒ limited validity of standard (stationary) ballooning calculations
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