The Stability of Internal Transport Barriers to MHD Ballooning Modes and Drift Waves: a Formalism for Low Magnetic Shear and for Velocity Shear

J. W. Connor, R. J. Hastie, A. J. Webster and H. R. Wilson

EURATOM-UKAEA Fusion Association, Culham Science Centre, Abingdon, Oxon, OX14 3DB, UK

INTRODUCTION

- Transport Barriers improve confinement
 important to assess their stability
- Transport Barriers are often associated with low magnetic shear and sheared radial electric fields

JT-60U

This work was jointly supported by the United Kingdom Engineering and Physical Sciences Research Council and EURATOM

- The standard tool for stability studies the ballooning theory fails in these circumstances
- We present a complementary approach to overcome this
- Applications to high-n MHD ballooning modes and microinstabilities

LIMITATIONS ON BALLOONING THEORY

Theory requires A/B << 1,

A: breaking of degeneracy between mode resonant surfaces (mrs), $m = nq (r_m)$, due to profile variation

$$A = \frac{\Delta \omega}{\omega} \sim \frac{1}{\omega} \frac{\partial \omega}{\partial x} \Delta x \sim \frac{1}{L} \cdot \frac{1}{nq'}$$

B: toroidal coupling between modes on adjacent surfaces
$$B = C^{T} \sim \frac{a}{R} \exp\left(-\frac{1}{|s|}\right) \qquad \text{(for MHD)}$$

• At low magnetic shear, s, theory fails, unless $n \rightarrow \infty$ fast enough!

• Toroidal rotation shear \Rightarrow Doppler-shift, $\omega \rightarrow \omega + n\Omega'x$ $A = \frac{1}{\Omega} \cdot \frac{d\Omega}{dx} \cdot \frac{1}{q'} \equiv \frac{d\hat{\Omega}}{dq} \quad (ie \ \hat{\Omega}_q)$

 \Rightarrow Theory fails unless $\hat{\Omega}_q \leq 0(1/n)$

RECURRENCE RELATION AT LOW S

- Alternative approach: recurrence relation between amplitudes of 'modelets' located at each mrs
 - not simple Fourier modes
- For low s, gives eqn for eigenvalue λ and spectrum, a_m $(\lambda - \lambda_m)a_m + C_m^T(a_{m+1} + a_{m-1})/2 = 0$

 Can deduce coefficients from local ballooning space dispersion relation as a function of x and ballooning parameter k.

$$\lambda - \lambda(\mathbf{x}) + \mathbf{C}^{\mathrm{T}}(\mathbf{x}) \cos \mathbf{k} = 0$$

- let
$$x \leftrightarrow m/nq' \equiv x_m$$
, $e^{ikm} \leftrightarrow a_m$

 Use analytic solutions of ballooning eqn at low s; in general ⇒ C^T ~ exp (-1/|ε|), ε ∝ s^p

APPLICATION (1): HIGH-N MHD BALLOONING

- s α equilibrium with favourable average curvature $\propto a/R (1 1/q^2)$ $[\gamma - \gamma_m]a_m + C(\alpha_m, s_m)[a_{m+1} + a_{m-1}]/2 = 0$ $\gamma_m = \gamma_0(\alpha_m, s_m); \qquad C \propto \alpha_m \exp(-1/|s_m|)/s_m$ s- α diagram
- Near ITB at q_{min} : $\alpha = \alpha_{max} \operatorname{sech}^2 (x/L_*)$ $q = q_{min} (1 + \mu x^2/2a^2)$
- Discrete mrs, x_m
 lie on trajectory in s α space
 controlled by α_{max}, L_{*}, μ
 - avoid unstable region
 - or step across using discreteness;
 easier if q_{min} is low order rational

 Always unstable if a/R → 0, but can map out stable operating diagram for (α_{max}, L_{*}/r) at finite a/R

Maximum stable α , α_{max} , as a function of the barrier width L_* , $(\mu = 1)$

- Can sustain high pressure, $\Delta p \propto \alpha_{max} L_*$, if barrier narrow
- Self-consistent bootstrap current J_{BS} (α, a/R)) modifies shear
 ⇒ stable regimes even if s ≠ 0 when barrier absent

APPLICATION (2): DRIFT WAVES - TOROIDAL ITG

• Long wavelength, $b_s = k_\perp^2 \rho_s^2 \ll 1$, flat density (Romanelli & Zonca, Phys Fluids B5 (1993) 4081)

 \Rightarrow parameter b_T = b_s (R/L_T)^{1/2},

- toroidal branch
- find different poloidal mode structures and local eigenvalues for s > 0 and s < 0, eg either side of q_{min}
- involve even, odd and mixed parity (in poloidal angle, θ) modes
- Coupling coefficient C^T ~ exp (-1/ε), ε ~ b_T^{1/3} s^{1/2}, for most strongly coupled mode (mixed parity)
 - weak coupling at low s or b_s,
 - but, nevertheless, requires very long wavelength to have negligible coupling near $q_{min}!$ say n ~ 6 for $\rho_* = 1/256$

UKAEA

• There is also a slab branch: $\varepsilon \sim b_T^{1/2} s^{3/4}$

Toroidal coupling coefficient, $C^{T}(x_{1})$ evaluated at x_{1} , the nearest resonant surface to q_{min} , for ITG modes as a function of $b_{s} = (k_{1}\rho_{s})^{2}$

• Different eigenmodes for a_m spectrum

TOROIDAL ROTATION SHEAR: MHD BALLOONING

• Analytic solution of Doppler-shifted ($\gamma \rightarrow \gamma$ - in $\Omega'x$) recurrence relation for small (α , s) and quadratic radial variation of α

• Continuous evolution from stationary plasma result: $\gamma = \gamma_{max}$ (k) to sheared rotation result: $\gamma = \langle \gamma (k) \rangle$ (Waelbroeck & Chen, Phys Fluids B **3** (1991) 601)

- Transition at $\hat{\Omega}_{q} \sim \hat{\Omega}_{q}^{crit} \sim 0$ (1/n)
 - transition sharper as $\Lambda^2 = nqsr/L_*$ increases
 - stationary result rapidly becomes invalid

COMPLEMENTARY NUMERICAL 2D SOLUTION

- α ~ s ~ 0(1) with stronger flow shear using numerical 2D eigenmode technique
- For α = 2, s = 1, recover result of time-dependent solution by
 Miller et al (*Phys Plasmas* 2 (1995) 3676) when n → ∞

• Example:
$$\alpha = 1$$
, s = 1

- Finite n: γ drops less rapidly as n decreases
- Can pass through another unstable region before finally stabilising at $\ d\hat{\Omega}/dq \cong 1$

CONCLUSIONS

- New formalism for stability calculations at low s, relevant to ITBs
 recurrence relation between 'modelets'
- Ballooning mode radial structures tend to narrow at low s and near q_{min}
- MHD ballooning modes can be stable in ITBs with high pressure if they are sufficiently narrow (due to favourable average curvature)
- ITG modelets can be weakly coupled near q_{min}, but only if very long wavelength
 - different poloidal mode structures and eigenvalues on either side of q_{min} so ITB acts as a 'barrier' to mode structures
- Toroidal rotation shear: γ_{MHD} reduces rapidly for $d\hat{\Omega}/dq \sim 0(1/n)$, finally stabilising for $d\hat{\Omega}/dq \cong 1$, ie v ~ sv_A

 \Rightarrow limited validity of standard (stationary) ballooning calculations

