Cross-machine NTM physics studies and implications for ITER

Presented by R. J. Buttery¹,

On behalf of: P. Belo², D. P. Brennan³, S. Coda⁴, L.-G. Eriksson⁵, J. Graves⁴, S. Günter⁶, C. Hegna⁷, T. C. Hender¹, D. F. Howell¹, H. R. Koslowski⁸, R. J. La Haye³, M. Maraschek⁶, M. L. Mayoral¹, A. Mück⁴, M. F. F. Nave², O. Sauter⁴, E. Westerhof⁹, C. Windsor¹, and the ASDEX Upgrade⁶ and DIII-D³ teams, and JET-EFDA contributors^{*}.

¹EURATOM/UKAEA Fusion Association
²Association EURATOM/IST
³General Atomics, San Diego
⁴CRPP, Association EURATOM-Confédération Suisse
⁵Association EURATOM-CEA, CEA-Cadarache

⁶MPI für Plasmaphysik, EURATOM Association ⁷Dept. of Engineering Physics, University of Wisconsin ⁸Association EURATOM-FZ Jülich IPP. ⁹FOM-Rijnhuizen, Ass. EURATOM-FOM. ^{*}see annex 1, Pamela et al., Nuc Fus 43 (2003) 1540.

20th IAEA Fusion Energy - Vilamoura

Are NTMs a problem for ITER?

• NTM physics is expected to scale with ρ^{\star}

- often observed in local β onset scalings
- → low threshold in ITER?

Are NTMs a problem for ITER?

• NTM physics is expected to scale with ρ^{\star}

– often observed in local $\boldsymbol{\beta}$ onset scalings

→ low threshold in ITER?

- But analyses in global $\beta_{\rm N}$ suggests another possibility

- which is it?

 Key aspect in resolving the onset is the seeding process...

Which modes are a concern?

- 2/1 NTMs terminate performance & unacceptable in ITER
- 3/2 NTMs significant effect
 - typically 15-20% on confinement \rightarrow ~ -30% in fusion power
 - trace Tritium experiments show consistent with ~50% fall in inward pinch in vicinity of island
- Higher m/n NTMs also impact fusion performance at low q₉₅
 - <u>JET: 3.7MA, 2.9T, *q*₉₅=2.7:</u>
 - up to 13% effect on confinement
 - up to 30% effect on neutrons

Which modes are a concern?

- 2/1 NTMs terminate performance & unacceptable in ITER
- 3/2 NTMs significant effect
 - typically 15-20% on confinement \rightarrow ~ -30% in fusion power
 - trace Tritium experiments show consistent with ~50% fall in inward pinch in vicinity of island
- Higher m/n NTMs also impact fusion performance at low q₉₅
 - <u>JET: 3.7MA, 2.9T, *q*₉₅=2.7:</u>
 - up to 13% effect on confinement
 - up to 30% effect on neutrons
 - AUG: 4/3 NTMs at q₉₅=3.7:
 - up to 20% effect on stored energy

20th IAEA Fusion Energy - Vilamoura

- NTM ρ^* scalings:
 - Onset criteria for NTMs
 - How do the scalings do?
- Role of the seed: the Sawtooth
 - Influence on thresholds
 - Sawtooth control
 - Advances in sawtooth prediction
- The seeding process
 - Sawtooth coupling mechanisms
 - Other trigger mechanisms and effects
- Implications for ITER

NTM onset criteria

- NTMs driven by hole in bootstrap
 - but onset criteria depend on small island stabilisation effects
 - require a seed island to reach positive growth
 - these introduce a ρ^{\star} dependence in the metastable threshold
- Onset β highly sensitive to seed size
 - scaling of seeding process may be the critical thing
 - uncertainties both in seed needed and seed obtained

Island size

Pretty good in terms of underlying NTM physics and metastable threshold...

- power ramp-down experiments measure β at which 3/2 NTM self-stabilises
- ITER baseline operation point deeply into metastable region
 - small triggers can excite mode
 - mode removal requires driving island down to small sizes

• But they are not predictive of NTM onset β and time on JET...

- β stays close to NTM onset scaling prediction once H-mode reached
 - for both local and global parameter fits

• But they are not predictive of NTM onset $\boldsymbol{\beta}$ and time

- β stays close to NTM onset scaling prediction once H-mode reached in JET
 - for both local and global parameter fits
- similarly on AUG:
 - proximity to scaling is a necessary-but-not-sufficient condition for NTMs
- there must be an extra control parameter...

What is the hidden control parameter?

• Employ neural network to look for pattern in data...

- automatic optimisation from choice of 27 input parameters
- train to predict onset time
- Network successful -
 - predicts decreasing time to NTM as onset approached
 - unlike p* scaling!
 - best network uses just $\beta_N,\,\rho^{\bigstar}$ and sawtooth period
 - period even more significant than ρ*

Role of the sawtooth

 ${}^{\bullet}$ Sawtooth period plays key role in NTM onset β

Cross-machine NTM physics - Buttery

JET

Sawtooth control in ITER

ITER has two possible strategies:

- TER has two possible c_{α} early α production to stabilise sawtee c_{α} (a) c_{α} (b) c_{α} (b) c_{α} (c) c_{α
 - start up and current drive
 - but still limited and not steady state
- current drive destabilisation
 - is this possible for fast particle stabilised (ideal) sawteeth?...

Destabilisation of fast particle stabilised sawteeth now achieved:

- core ICRH stabilises sawteeth.
- ICCD destabilises as inversion radius is approached

Further progress with ECCD on AUG \rightarrow see Maraschek talk today

20th IAEA Fusion Energy - Vilamoura

[*Porcelli et al, NF44, 362]

Sawtooth prediction is key

Good progress in the theory...

eg: Rotation dependence on JET...

- kinetic effects stabilise sawteeth at high rotation

- important in reconciling data from present devices

20th IAEA Fusion Energy - Vilamoura

Sawteeth with NNBI

- JT60U also finds fast particles from energetic negative ion beams stabilising...
 - 350keV NNBI gives sawteeth of 300ms
 - cf PNBI: 130ms

[Kramer et al, NF40, 1383]

Sawteeth with NNBI

- JT60U also finds fast particles from energetic negative ion beams stabilising...
 - 350keV NNBI gives sawteeth of 300ms
 - cf PNBI: 130ms
- Explained by Graves:
 - finite ion orbit effects change free energy
 - depends on deposition location...
- Possible mechanisms for sawtooth control in ITER?

[Graves et al, PRL92, 185003]

How is initial seed made?

- Sawteeth often trigger 3/2 NTMs before the crash...
 - Magnetic coupling?
 - NTM often too slow for toroidal coupling to n=2
 - 3 wave seeding possible:
 - bicoherence analysis shows phase lock between driving (11+43) and 32 fields
 - but frequencies are not always consistent...
 - Ion polarisation effects?
 - MHD can change island rotation*
 - potential to lower/reverse ion polarisation effects enabling seeding
 - avoids need for frequency locking

[*Hegna, Bull.Am.Phys.Soc.48, 280]

20th IAEA Fusion Energy - Vilamoura

Forced reconnection at crash

- At low β , long sawteeth trigger NTMs directly at the crash
 - excite multiple NTMs & 2/1 much more likely \rightarrow concern for ITER
 - codes such as NFTC and NIMROD now able to 3D model such processes in detail...
- Example: forced reconnection inducing a 3/2 in DIII-D
 - NIMROD simulation now includes rotation shear:
 - island is still destabilised by forced reconnection
 - but as island grows its structure becomes distorted by rotation

Cross-machine NTM physics - Buttery

1.0

0.5

N 0.

Te

2.0

1.5

R

2.5

Fishbone triggers - at higher β_N ?

Fishbones also trigger NTMs

 3/2 NTM thresholds on AUG generally higher than for sawtooth

Fishbone triggers - at higher β_N ?

Fishbones also trigger NTMs

- 3/2 NTM thresholds on AUG generally higher than for sawtooth
- although on JET these do not extend to low $\boldsymbol{\beta}$
 - unlike cases with fast particle stabilised sawteeth
- Fishbones recently observed to also trigger 2/1 NTMs:
 - at β_N =2.5 on JET

Ideal triggers at high β_N ...?

Conclusions for ITER on NTMs

- ITER deeply metastable to NTMs, but tractable?
 - benign scalings for some NTM onset mechanisms
 - control of seeds possible for others
- Baseline scenario *key issues are fast particles & sawtooth*
 - further triggers at higher β_N may remain at high β_N
- Hybrid scenario *main concern is 2/1 NTM* (3/2 fairly benign)
 - does 2/1 onset threshold fall with $\rho^{\star}?\,$ mitigate with high $q_{\text{min}}?$
- However, caution required for ITER...
 - adverse NTM physics scalings and high fast particle populations
 - need to confirm scalings of high β_N modes, especially 2/1 NTMs
 - need to integrate control techniques into scenarios to develop ready to use tools (not lengthy research programmes) for ITER

Nevertheless, we now see the principal physics ingredients assembled, a new generation of codes identifying the effects, and good progress in control and predictive capability.

 \rightarrow Ongoing work is important to provide solutions for ITER

Transient transport events can seed NTMs

• Ion polarisation effects depend on island rotation - $a_{pol} \sim \omega(\omega - \omega *_I)$

[[]Hegna, Bull.Am.Phys.Soc.48, 280]

Rotation from balance of ion and electron dissipation:

- naturally leads to small islands via ion polarisation effects
- higher e-dissipation raises w₀ ~(D_e)^{0.5}
- Does not require frequency matching between MHD modes and the island
- May explain error field effects

What is the hidden control parameter?

• Employ neural network to look for pattern in data...

- automatic optimisation from choice of 27 input parameters
- train to predict onset time
- Network successful
 - predicts decreasing time to NTM as onset approached
 - unlike p* scaling!
 - best network uses just $\beta_N,\,\rho^{\bigstar}$ and sawtooth period
 - period even more significant than ρ*

• Sawtooth period plays key role in NTM onset β

Preemptive current drive on DIII-D

 Use real time MSE tracking to put ECCD on NTM resonant surface, raising NTM thresholds

20th IAEA Fusion Energy - Vilamoura

Cross-machine NTM physics - Buttery

Mode removal in ITER

- Island evolutions show scale length of small island term, w_d , does not change much with ρ^*
- Mode removal in ITER will require driving islands down to similar size to those required in present devices

Use of correct local parameters

20th IAEA Fusion Energy - Vilamoura

Cross-machine NTM physics - Buttery

 \bullet But they are not predictive of NTM onset β and time on JET...

- β stays close to NTM onset scaling prediction once H-mode reached
 - for both local and global parameter fits
- JET NTM onsets align well with natural discharge evolution
 - (clue: ICRH phasings)

ρ^{\star} scalings sometimes work for NTM onset

 AUG discharges sometimes approach scalings from below and get NTM when the scaling is reached

Formalism - origin of ρ^* scaling

• Evolution of island size w governed by modified Rutherford:

• Example: ion polarisation term, $a_{pol} \propto f(\Omega) g(v, \varepsilon) \rho_{i\theta}^2$

Wseed

20th IAEA Fusion Energy - Vilamoura

ITER possible figure?

Possibly how it looks...

What is the hidden control parameter?

• Employ neural network to look for pattern in data...

- automatic optimisation from choice of 27 input parameters
- train to predict onset time
- Network successful
 - predicts decreasing time to NTM as onset approached
 - unlike p* scaling!
 - best network parameters:

	Parameters:	Residual [†]	Errors	
	eta_N $ au_{sawtooth}$ $ ho_{i\phi}^{*}$	34.3	17%	
	eta_N $ au_{sawtooth}$	34.4	20%	
	$\beta_N \ { ho_i}_{\phi}^{*}$	35.7	26%	
	β_N	35.9	31%	
	$\rho_{i\phi}^{*}$	37.5	29%	
I	$^{\dagger}\Sigma$ (predicted – actu	al time to N	TM^{2}	

20th IAEA Fusion Energy - Vilamoura

- Continue good progress on sawtooth models
- Demonstrate sawtooth control with strong FP populations at high beta
- Explore NTM triggering mechanisms and ways to control them
- Find beta limit in hybrid scenario and how it scales
- Resolve NTM small island physics and its scaling particularly for 2/1 modes