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Motivation

e [ limits in advanced tokamaks may be set well below the ideal
MHD limit by nonlinear instabilities associated with
neoclassical tearing modes (NTM)

o Like the classical TMs, NTMs are current driven but the
source of free energy Is the perturbed bootstrap current —
a neoclassical’ (toroidal geometry driven) term. NTMs can be
unstable even when A’ < 0

 Their interaction and nonlinear evolution in the presence of
equilibrium sheared flows is not yet fully understood and is the
subject of major numerical initiatives e.g. on NIMROD

* Flows are ubiquitous in most tokamaks e.g. from NBI heating,
RF heating or self-consistent turbulence.



Role of Flows

« Flows can influence both outer layer and inner layer dynamics for
resistive modes.

 They can also bring about changes in linear coupling mechanisms
such as toroidal coupling between harmonics.

« Past nonlinear studies — mainly numerical — and often limited to
simple situations (e.g. poloidal flows, non-self consistent) reveal
Interesting effects like oscillating islands, distortion in eigenfunctions
etc.

* Also some recent analytic work on the the effect of flow on the
threshold and dynamical properties of magnetic islands which are
relevant to NTMs

Refs: Chen &Morrison, 92, 94: Bondeson & Persson, ’86,’88,’89; M.Chu,’98
Dewar & Persson, '93; Pletzer & Dewar, ’90,’91,’94;



Aim of the present work

e Investigate the nonlinear evolution of NTMs in the presence
of sheared equilibrium flows

e OQur primary approach is numerical — solve a set of model
reduced MHD equations that contain viscous forces based on
neoclassical closures and that permit inclusion of equilibrium
flows In a consistent and convenient manner

* Also look at nonlinear evolution of classical tearing modes for
a comparative study and to obtain a better understanding of the
role of flows

» Develop a generalized Rutherford type model to seek qualitative
understanding of the nonlinear numerical results



Model Equations

» Generalized reduced MHD equations
(Kruger, Hegna and Callen, Phys. Plasmas 5 (1998) 4169.)

 Applicable to any toroidal configuration — no constraint

: : A
on aspect ratio — exploits smallness of Ti and M.
I a

o Clear separation of time scales — MHD equilibrium, perp.
wave motion and parallel wave motion

 Final equations evolve scalar quantities on shear Alfven
time scales

 Energy conservation, divergence free magnetic field to all
orders

e Include neoclassical closures, equilibrium flows



Model Equations (GRMHD)
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Numerical simulation

« GRMHD eqns solved using code NEAR — toroidal initial value
code — Fourier decomposition in the poloidal and toroidal
directions and central finite differencing in the flux coordinate
direction.

 Equilibrium generated from another independent code TOQ

e Typical runs are made at S ~ 10°, low (3, sub-Alfvenic flows

e Linear benchmarking done for classical resistive modes

* For NTMs threshold, 1sland saturation etc. benchmarked in the
absence of flows.

* Present study restricted to sheared toroidal flows



Equilibrium without flow
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Linear Benchmarking of (2,1) resistive TM
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Nonlinear saturation of (2,1) resistive TM
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Main points of investigation

o Effects arising from equilibrium modifications
e Influence on toroidal coupling

e Influence on inner layer physics

« Changes in outer layer dynamics

* Nonlinear changes — saturation levels etc.



Equilibrium with toroidal flow
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Reduction of (2,1) resistive TM growth with differential flow
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o stabilizing effect due to equilibrium changes

e.g. enhancement of pressure-curvature contribution
e stabilizing effect due to flow induced de-coupling

of rational surfaces



o Slab or cylinder
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Reduced reconection at the (3,1) surface
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* In the presence of finite flow shear the stabilization effect
IS smaller

 This can be understood and explained quantitatively on the
basis of linear slab theory analysis (chen & morrison, pF 8 2 (1990) 495)

ey &2’!5,&’%55—3&;}, 4 = flow correction > 1

Small flow shear destabilizes the resistive mode
through changes in the inner layer dynamics




Nonlinear evolution of (2,1) resistive mode
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Saturated island width decreases with differential flow
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Summary of numerical results for classical TMs

* In the linear regime:
e flow Induces mode rotation
o differential flow : stabilizing influence
e modification in Mercier criterion
e decoupling of rational surfaces
o flow shear: destabilizing influence — consistent
with inner layer dynamical theories

* Nonlinear regime

» Above trend continues for differential and sheared flows

» Mode acquires real frequency which asymptotes to flow
frequency

* Flow reduces saturated island width



Neoclassical Tearing Modes

Benchmarking tests in absence of flow:
- threshold amplitude for instability
- nonlinear behavior — island saturation

- pressure equilibration



Existence of threshold amplitude for (3,1) NTM
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Pressure equilibration
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e pressure variance across the island
o pressure flattening ensured by suitable choice of
ratio of perpendicular and parallel thermal conductivities

- typically y, / x, ~ 10°.



Nonlinear evolution of (3,1) NTM island width
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“"Phase diagram’’ of (3,1) NTM
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NTM with flows

o self-consistent equilibria generated by TOQ

« two types of flow profiles — differential flow, sheared
flow

e attention paid to pressure equilibration




Nonlinear evolution of (3,1) NTM

4e-08 | . |
3e-08 |
©_  2e-08

LL
1e-08 |-
D ]
1000 2000 3000 4000
t/t,
No flow = Sheared flow

............... Differential flow



Summary of numerical results for NTMs

e In the quasi- linear regime:

e differential flow : stabilizing influence
e flow shear: destabilizing influence — consistent
with quasi-linear theory

e Fully nonlinear regime — we experience numerical instabilities
In the presence of flows — possible cause - inadequate
pressure equilibration — this is being investigated.



Analytic Model

e Single helicity calculation

 Flow effects incorporated in polarization current term

e two fluid model

* neoclassical effects in Ohm’s law

 simple pressure evolution equation & neglect parallel dynamics
« phenomenological model for GGJ effect

e use both matching conditions to get island evolution
equation as well as temporal evolution of real frequency



Island equation with sheared flow
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Summary and Conclusions

* Presented numerical simulation results, using a model set of
GRMHD equns. with neoclassical viscous terms and toroidal
flow, for nonlinear evolution of resistive TMs and NTMs

o Differential flow has a stabilizing influence — can be understood
Intuitively in the linear regime as occurring from decoupling of
rational surfaces - the decoupled surface appears as a conducting
surface and exerts a stabilizing influence. Same trend continues
In the nonlinear regime — no analytic theory exists in the nonlinear
regime




Summary and Conclusions (contd)

 Flow shear has a destabilizing influence in the small shear
limit examined by us. In the linear regime it is consistent
with past analytic work (e.g. Chen, Morrison, PFB(1990)495).
In the quasi-linear regime our single mode Rutherford
type calculation shows similar trend.

 Flow induces a real frequency in the mode which can be
understood from our Rutherford type model equation —
the shift in the frequency Is proportional to the amount of

shear.

e Final saturated island widths for NTMs in the presence of
flow has not yet been resolved numerically and is
presently under investigation




