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Motivation

• β limits in advanced tokamaks may be set well below the ideal 
MHD limit by nonlinear instabilities associated with 
neoclassical tearing modes (NTM)

• Like the classical TMs, NTMs are current driven but the 
source of free energy is the perturbed bootstrap current –
a `neoclassical’ (toroidal geometry driven) term. NTMs can be 
unstable even when 

• Their interaction and nonlinear evolution in the presence of 
equilibrium sheared flows is not yet fully understood and is the
subject of major numerical initiatives e.g. on NIMROD

• Flows are ubiquitous in most tokamaks e.g. from NBI heating,
RF heating or self-consistent turbulence.



Role of Flows

• Flows can influence both outer layer and inner layer dynamics for 
resistive modes. 

• They can also bring about changes in linear coupling mechanisms
such as toroidal coupling between harmonics.

• Past nonlinear studies – mainly numerical – and often limited to
simple situations (e.g. poloidal flows, non-self consistent) reveal 
interesting effects like oscillating islands, distortion in eigenfunctions
etc. 

• Also some recent analytic work on the the effect of flow on the
threshold and dynamical properties of magnetic islands which are
relevant to NTMs

Refs: Chen &Morrison, ’92, 94; Bondeson & Persson, ’86,’88,’89; M.Chu,’98
Dewar & Persson, ’93; Pletzer & Dewar, ’90,’91,’94;



Aim of the present work

• Investigate the nonlinear evolution of NTMs in the presence
of sheared equilibrium flows

• Our primary approach is numerical – solve a set of model 
reduced MHD equations that contain viscous forces based on 
neoclassical closures and that permit inclusion of  equilibrium 
flows in a consistent and convenient manner

• Also look at nonlinear evolution of classical tearing modes for
a comparative study and to obtain a better understanding of the
role of flows

• Develop a generalized Rutherford type model to seek qualitative
understanding of the nonlinear numerical results



Model Equations
• Generalized reduced MHD equations

(Kruger, Hegna and Callen, Phys. Plasmas 5 (1998) 4169.)

• Applicable to any toroidal configuration – no constraint
on aspect ratio – exploits smallness of          and

• Clear separation of time scales – MHD equilibrium, perp.
wave motion and parallel wave motion

• Final equations evolve scalar quantities on shear Alfven
time scales

• Energy conservation, divergence free magnetic field to all
orders

• Include neoclassical closures, equilibrium flows



Model Equations (GRMHD)
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Equilibrium flow

• Neoclassical closure

• appropriate for long mean free path limit
• reproduces poloidal flow damping
• gives appropriate perturbed bootstrap current



Numerical simulation

• GRMHD eqns solved using code NEAR – toroidal initial value
code – Fourier decomposition in the poloidal and toroidal
directions and central finite differencing in the flux coordinate
direction.

• Equilibrium generated from another independent code TOQ

• Typical runs are made at S ~ 105 , low β, sub-Alfvenic flows

• Linear benchmarking done for classical resistive modes

• For NTMs threshold, island saturation etc. benchmarked in the
absence of flows.

• Present study restricted to sheared toroidal flows



Equilibrium without flow



Linear Benchmarking of (2,1) resistive TM

• Also established the γ ∝ S-3/5 scaling



Nonlinear saturation of (2,1) resistive TM



Toroidal flow profiles

1- differential flow
2- sheared flow



Main points of investigation

• Effects arising from equilibrium modifications

• Influence on toroidal coupling 

• Influence on inner layer physics

• Changes in outer layer dynamics

• Nonlinear  changes – saturation levels etc.



Equilibrium with toroidal flow

Constant pressure
Surfaces shifted from
Constant flux surfaces

Maschke & Perrin, Plasma Phys. 22
(1980) 579



Reduction of (2,1) resistive TM growth with differential flow

• stabilizing effect due to equilibrium changes
e.g. enhancement of pressure-curvature contribution

• stabilizing effect due to flow induced de-coupling 
of rational surfaces



• Slab or cylinder
;

• Toroidal geometry

outer response - ∆′ matrix

inner response

Quadratic equation



Reduced reconection at the (3,1) surface



• In the presence of finite flow shear the stabilization effect
is smaller

• This can be understood and explained quantitatively on the
basis of linear slab theory analysis (Chen & Morrison, PF B 2 (1990) 495)

Small flow shear destabilizes the resistive mode
through changes in the inner layer dynamics



Nonlinear evolution of (2,1) resistive mode

Sheared flowNo flow
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Saturated island width decreases with differential flow



Summary of numerical results for classical TMs

• In the linear regime:
• flow induces mode rotation
• differential flow : stabilizing influence 

• modification in Mercier criterion
• decoupling of rational surfaces

• flow shear: destabilizing influence – consistent
with inner layer dynamical theories

• Nonlinear regime

• Above trend continues for differential and sheared flows
• Mode acquires real frequency which asymptotes to flow

frequency 
• Flow reduces saturated island width



Neoclassical Tearing Modes

Benchmarking tests in absence of flow:   

- threshold amplitude for instability

- nonlinear behavior – island saturation

- pressure equilibration 



Existence of threshold amplitude for (3,1) NTM



Pressure equilibration

• pressure variance across the island
• pressure flattening ensured by suitable choice of
ratio of perpendicular and parallel thermal conductivities
- typically χ|| / χ⊥ ~ 106 .



Nonlinear evolution of (3,1) NTM island width



``Phase diagram’’ of (3,1) NTM



NTM with flows

• self-consistent equilibria generated by TOQ
• two types of flow profiles – differential flow, sheared

flow
• attention paid to pressure equilibration



Nonlinear evolution of (3,1) NTM

Sheared flowNo flow
Differential flow



Summary of numerical results for NTMs

• In the quasi- linear regime:

• differential flow : stabilizing influence
• flow shear: destabilizing influence – consistent

with quasi-linear theory

• Fully nonlinear regime – we experience numerical instabilities
in the presence of flows – possible cause - inadequate
pressure equilibration – this is being investigated.



Analytic Model

• Single helicity calculation

• Flow effects incorporated in polarization current term

• two fluid model

• neoclassical effects in Ohm’s law

• simple pressure evolution equation & neglect parallel dynamics

• phenomenological model for GGJ effect

• use both matching conditions to get island evolution
equation as well as temporal evolution of real frequency



Island equation with sheared flow

Pressure/curvature Neoclassical current

polarization current flow shear
differential flow



Summary and Conclusions

• Presented numerical simulation results, using a model set of 
GRMHD equns. with neoclassical viscous terms and toroidal
flow, for nonlinear evolution of resistive TMs and NTMs

• Differential flow has a stabilizing influence – can be understood
intuitively in the linear regime as occurring from decoupling of
rational surfaces - the decoupled surface appears as a conducting
surface and exerts a stabilizing influence. Same trend continues
in the nonlinear regime – no analytic theory exists in the nonlinear
regime



Summary and Conclusions (contd)

• Flow shear has a destabilizing influence in the small shear
limit examined by us. In the linear regime it is consistent
with past analytic work (e.g. Chen, Morrison, PFB(1990)495).
In the quasi-linear regime our single mode Rutherford
type calculation shows similar trend.

• Flow induces a real frequency in the mode which can be 
understood from our Rutherford type model equation –
the shift in the frequency is proportional to the amount of
shear.

• Final saturated island widths for NTMs in the presence of 
flow has not yet been resolved numerically and is 
presently under investigation


