

Max-Planck-Institut für Plasmaphysik

Kinetic calculations of the NTM polarisation current: reduction for small island widths and sign reversal near the diamagnetic frequency

Emanuele Poli

Andreas Bergmann, Arthur G. Peeters, Lynton C. Appel*, Simon D. Pinches

Max-Planck-Institut für Plasmaphysik, Garching bei München, Germany EURATOM Association

*EURATOM/UKAEA Fusion Association, Culham Science Centre, Abingdon, UK

Motivations

 \bullet Reliable description of NTMs necessary in order to determine onset conditions and stabilisation requirements (\rightarrow ITER)

• Problem at the meeting point of MHD and kinetic theory (\rightarrow required for accurate predictions)

Motivations

 \bullet Reliable description of NTMs necessary in order to determine onset conditions and stabilisation requirements (\rightarrow ITER)

• Problem at the meeting point of MHD and kinetic theory (\rightarrow required for accurate predictions, e.g. NTM polarisation current)

Outline

- Polarisation current in the presence of a magnetic island
- Solving the drift kinetic equation
- Single-particle motion and full 3D simulations: new conditions for island stability

The Neoclassical Tearing Mode

• Island evolution connected with the parallel currents flowing near the resonant surface

$$\frac{\mathrm{d}W}{\mathrm{d}t} = c_1 \Delta' + \frac{c_2}{W} \int_{-1}^{\infty} \mathrm{d}\Omega \oint \frac{\mathrm{d}\xi \cos\xi}{\sqrt{\cos\xi + \Omega}} j_{\parallel}^{n.i.}$$

New flux coordinates: helical flux $\Omega \equiv 2(\psi - \psi_s)^2 / W_{\psi}^2 - \cos \xi$ helical angle $\xi \equiv m\theta - n\zeta$

The Neoclassical Tearing Mode

$\frac{\mathrm{d}W}{\mathrm{d}t} = c_1 \Delta' + \frac{c_2}{W} \int_{-1}^{\infty} \mathrm{d}\Omega \oint \frac{\mathrm{d}\xi \cos\xi}{\sqrt{\cos\xi + \Omega}} j_{\parallel}^{n.i.}$

• Destabilising term: Bootstrap current loss

[Qu and Callen, UWPR1985; Carrera et al., PoF 1986]

```
• Stabilising terms:
```

```
(large W)

\rightarrow \Delta' (current profile, m \ge 2)
```

(small W)

 $\rightarrow \dots$

 \rightarrow Polarisation current (?)

[Rutherford, PoF 1973]

[Smolyakov et al., PoP 1995; Wilson et al., PoP 1996]

The Neoclassical Tearing Mode

Present understanding of the Neoclassical Tearing Mode

pp

In this talk: focus on the polarisation current; no mode evolution!

20th IAEA FEC

The island polarisation current

Island motion with respect to the plasma
 ⇒ electric field induced (Faraday)

• $E \times B$ motion in the island rest frame: plasma acceleration and deceleration around the *O*-point

The island polarisation current

Island motion with respect to the plasma
 ⇒ electric field induced (Faraday)

• $E \times B$ motion in the island rest frame: plasma acceleration and deceleration around the *O*-point

 Variation of plasma inertia balanced by a Lorentz force provided by

 $j_{\rm pol}^{\rm class} = rac{en}{\omega_c} rac{{
m d} v_E}{{
m d} t}$ P

Polarisation current

(⇒ mainly carried by the ions) [Smolyakov, PPCF 1993]

• Current continuity $(\nabla \cdot \mathbf{J}=0)$ ensured by an electron parallel current contributing to the Rutherford equation

The island polarisation current

Island motion with respect to the plasma
 ⇒ electric field induced (Faraday)

• $E \times B$ motion in the island rest frame: plasma acceleration and deceleration around the *O*-point

 Variation of plasma inertia balanced by a Lorentz force provided by

 $j_{\rm pol}^{\rm class} = \frac{en}{\omega_c} \frac{{\rm d}v_E}{{\rm d}t}$

Polarisation current

(⇒ mainly carried by the ions) [Smolyakov, PPCF 1993]

• Current continuity $(\nabla \cdot \mathbf{J}=0)$ ensured by an electron parallel current contributing to the Rutherford equation

Solving the drift kinetic equation

• Analytical determination of $j_{W_b}^{n.i.}$ from the drift kinetic equation possible employing the expansion parameters W/r, $W_b/W \ll 1$ (and further simplifications...)

• Drift kinetic equation in toroidal geometry with an island structure to be solved $\frac{\mathrm{d}f}{\mathrm{d}t} = \frac{\partial f}{\partial t} + \left(v_{||} \hat{\mathbf{b}} + \mathbf{v}_{d} + \mathbf{v}_{E} \right) \cdot \frac{\partial f}{\partial \mathbf{r}} - \frac{e}{m} \frac{\mathbf{v}_{d} \cdot \nabla \Phi}{v} \frac{\partial f}{\partial v} = C(f)$ parallel motion magnetic & electric drift electric field collisions

• Representation of the distribution function: $f = f_0 + \delta f = f_M(\psi, \mathcal{E}) + \delta f$ if $\delta f \ll f_0$: reduction of the numerical noise

• The equation for δf is $\frac{\mathrm{d}(\delta f)}{\mathrm{d}t} = C(\delta f) - \mathbf{v}_d \cdot \nabla f_M - \frac{ef_M}{T} \mathbf{v}_d \cdot \nabla \Phi$

Solution: • $\delta f \rightarrow$ markers (ions) \rightarrow Hamiltonian equations of motion in Boozer coordinates (\rightarrow HAGIS) [Pinches et al., CPC 1998]

• Collisions: Monte Carlo procedure [Bergmann et al., PoP 2001]

Polarisation current vs. island width

• Simulations performed for the (3,2) mode and large-machine parameters: $R = 8 \text{ m}, B_0 = 8 \text{ T}, n_i = 10^{20} \text{ m}^{-3}, T_i = 5 \text{ keV}$, flat temperature and density profiles

Local effects "smeared out" by trapped particles overlapping the island

Polarisation current vs. island width

• Simulations performed for the (3,2) mode and large-machine parameters: $R = 8 \text{ m}, B_0 = 8 \text{ T}, n_i = 10^{20} \text{ m}^{-3}, T_i = 5 \text{ keV}$, flat temperature and density profiles

Polarisation current vs. island width

• Simulations performed for the (3,2) mode and large-machine parameters: $R = 8 \text{ m}, B_0 = 8 \text{ T}, n_i = 10^{20} \text{ m}^{-3}, T_i = 5 \text{ keV}$, flat temperature and density profiles

 Local effects "smeared out" by trapped particles overlapping the island (cf. bootstrap current [Poli et al., PRL 2002]) • ASDEX Upgrade: $\begin{cases} W_{\text{seed}} \approx 1 \div 5 \text{ cm} \\ w_b \approx 0.7 \div 3 \text{ cm} \end{cases}$ Polarisation current 4.0•10⁻⁷ 3.0•10⁻⁷ $2.0 \cdot 10^{-7}$ $2.0 \cdot 10^{-7}$ 0 $1.0 \cdot 10^{-7}$ 0 -7 0 -7 0 -7 0 -7 0 -7 0 -7 -7 0 -7non-negligible standard orbit width theory -1.0•10⁻⁷ -2.0•10⁻⁷ 1.5 2.0 2.5 3.0 0.5 1.0 0.0 $W/w_{\rm b}$

Perpendicular current vs. island rotation frequency

• Simulations performed for the (3,2) mode and large-machine parameters: $R = 8 \text{ m}, B_0 = 8 \text{ T}, n_i = 10^{20} \text{ m}^{-3}, T_i = 5 \text{ keV}$, flat temperature and density profiles

 \bullet Scan over ω important because of theoretical and experimental uncertainties about its actual value

Perpendicular current vs. island rotation frequency

• Simulations performed for the (3,2) mode and large-machine parameters: $R = 8 \text{ m}, B_0 = 8 \text{ T}, n_i = 10^{20} \text{ m}^{-3}, T_i = 5 \text{ keV}$, flat temperature and density profiles

 \bullet Scan over ω important because of theoretical and experimental uncertainties about its actual value

• Behaviour of j_{\perp} vs. ω puzzling (quadratic scaling with ω expected from fluid picture)

Perpendicular current vs. island rotation frequency

- Simulations performed for the (3,2) mode and large-machine parameters: $R = 8 \text{ m}, B_0 = 8 \text{ T}, n_i = 10^{20} \text{ m}^{-3}, T_i = 5 \text{ keV}$, flat temperature and density profiles
- \bullet Scan over ω important because of theoretical and experimental uncertainties about its actual value

Perpendicular current vs. ω : low frequencies

IPP

surfaces due to a combination of magnetic

and electric drift (dominates over the

polarisation drift)

 $E \times B$ drift (island frame) when $2\omega_{tp} \approx \omega$

Perpendicular current vs. ω : transition to higher frequencies

 \bullet Transition to higher frequencies \rightarrow toroidal precession less and less important

 \bullet Bounce motion along the perturbed surfaces \rightarrow polarisation current sets on

IPP

Perpendicular current vs. ω : transition to higher frequencies

- Transition to higher frequencies
 → toroidal precession less and less important
- Bounce motion along the perturbed surfaces → polarisation current sets on (cf. fluid picture)

• High frequencies: polarisation current close to "fluid" behaviour \rightarrow quadratic dependence on ω found

• Superposition of island motion and bounce motion \rightarrow current reduction due to slower particles

IPP

• Complete kinetic description of the ion motion necessary in order to obtain a reliable calculation of the island polarisation current (of the bootstrap current as well)

- Polarisation-current sign influenced by competition between electric and magnetic drift
- Polarisation current strongly reduced for small island widths (comparable to banana width)

Current profiles from the drift kinetic equation

IPP

- Macroscopic quantities as moments of the distribution function
- Flux surface averages \rightarrow cells

$$\langle A \rangle = \lim_{\delta \Omega \to 0} \frac{\int A \mathrm{d}^3 \mathbf{r}}{\int \mathrm{d}^3 \mathbf{r}} \Rightarrow \frac{1}{n} \left\langle \int A \delta f \, \mathrm{d}^3 \mathbf{v} \right\rangle \simeq \frac{\int_{\Omega - \delta \Omega}^{\Omega + \delta \Omega} A \delta f \, \mathrm{d}^3 \mathbf{r} \mathrm{d}^3 \mathbf{v}}{\int_{\Omega - \delta \Omega}^{\Omega + \delta \Omega} f_0 \, \mathrm{d}^3 \mathbf{r} \mathrm{d}^3 \mathbf{v}}$$

20th IAEA FEC

Current profiles from the drift kinetic equation

IPP

- Macroscopic quantities as moments of the distribution function
- Flux surface averages \rightarrow cells

$$\langle A \rangle = \lim_{\delta \Omega \to 0} \frac{\int A \mathrm{d}^3 \mathbf{r}}{\int \mathrm{d}^3 \mathbf{r}} \Rightarrow \frac{1}{n} \left\langle \int A \delta f \, \mathrm{d}^3 \mathbf{v} \right\rangle \simeq \frac{\int_{\Omega - \delta \Omega}^{\Omega + \delta \Omega} A \delta f \, \mathrm{d}^3 \mathbf{r} \mathrm{d}^3 \mathbf{v}}{\int_{\Omega - \delta \Omega}^{\Omega + \delta \Omega} f_0 \, \mathrm{d}^3 \mathbf{r} \mathrm{d}^3 \mathbf{v}}$$

20th IAEA FEC

Current profiles from the drift kinetic equation

• "Radial" profiles of the polarisation current available!

• Flux surface averages \rightarrow cells

the distribution function

$$\langle A \rangle = \lim_{\delta\Omega \to 0} \frac{\int A d^3 \mathbf{r}}{\int d^3 \mathbf{r}} \Rightarrow \frac{1}{n} \left\langle \int A \delta f \, d^3 \mathbf{v} \right\rangle \simeq \frac{\int_{\Omega - \delta\Omega}^{\Omega + \delta\Omega} A \delta f \, d^3 \mathbf{r} d^3 \mathbf{v}}{\int_{\Omega - \delta\Omega}^{\Omega + \delta\Omega} f_0 \, d^3 \mathbf{r} d^3 \mathbf{v}}$$

• Binning in velocity space also possible $\frac{\delta\Omega}{\delta\Omega} A \delta f d^3 \mathbf{r} d^3 \mathbf{v}$ $\frac{+\delta\Omega}{\infty} f_0 d^3 \mathbf{r} d^3 \mathbf{v}$

Stabilising or destabilising?

• Numerical results ("standard" polarisation current) in agreement with the current understanding (flat pressure)

Stabilising or destabilising?

Numerical results ("standard" polarisation current) in agreement with the current understanding (flat pressure): polarisation current
 stabilising if the separatrix is excluded from the radial integration

Stabilising or destabilising?

Numerical results ("standard" polarisation current) in agreement with the current understanding (flat pressure): polarisation current
 stabilising if the separatrix is excluded from the radial integration
 destabilising if it is included in the radial integration
 [Waelbroeck and Fitzpatrick, PRL 1997]