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Motivations and outline W

Motivations

 Reliable description of NTMs necessary in order to determine onset conditions and
stabilisation requirements ( - ITER)

* Problem at the meeting point of MHD and kinetic theory (- required for accurate
predictions)
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Motivations and outline W

Motivations

 Reliable description of NTMs necessary in order to determine onset conditions and
stabilisation requirements ( - ITER)

* Problem at the meeting point of MHD and kinetic theory (- required for accurate
predictions, e.g. NTM polarisation current)

Outline

* Polarisation current in the presence of a magnetic island

 Solving the drift kinetic equation

» Single-particle motion and full 3D simulations: new conditions for island stability
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The Neoclassical Tearing Mode

* Island evolution connected with the parallel
currents flowing near the resonant surface

dW_ClA, / dQ?{ d€ cos§ jei

vecos& + () dl

New flux coordinates:
helical flux Q= 2(yp-1p5)* /W5 - cos ¢
helical angle ¢ = mf-n(
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The Neoclassical Tearing Mode

* Island evolution connected with the parallel
currents flowing near the resonant surface

dWw d€ cos &
_ AI / dﬂf n 7.
- Joosern Yl

 Destabilising term:

Bootstrap current loss [Qu and Callen, UWPR1985;
Carrera et al., PoF 1986]

« Stabilising terms:
(large W)
-~ A’ (current profile, m=2) [Rutherford, PoF 1973]

(small W)

> aan

— Polarisation current (?)  [Smolyakov et al., PoP 1995;
Wilson et al., PoP 1996]
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The Neoclassical Tearing Mode W
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* Island evolution connected with the parallel
currents flowing near the resonant surface
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« Destabilising term: Increasing 3

Bootstrap current loss [Qu and Callen, UWPR1985; Al | :
Carrera et al., PoF 1986] ) ‘ ]
IR \ ]

Fol

Growth rate dW/dt [a.u.]

e Stabilising terms: I T S
(large W) Island width W [a.u.]
. I . > s‘ﬁ

A' (current profile, m=2) [Rutherford, PoF 1973] )
(small W) . .
o |: Stabilising mechanism important
- Polarisation current ('7) [Smolyakov et al., PoP 1995; II: BOOtStrap current |mportant

Wilson et al., PoP 1996] l1l: A" important
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Present understanding of the Neoclassical Tearing Mode W

W
(@)
T

* Island evolution connected with the parallel
currents flowing near the resonant surface
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« Destabilising term: Increasing 3

Bootstrap current loss [Qu and Callen, UWPR1985; Al | :
Carrera et al., PoF 1986] ) ‘ ]
IR \ ]

Fol

Growth rate dW/dt [a.u.]

e Stabilising terms: I T I e e——
(large W) Island width W [a.u.]
N ! . > /

A' (current profile, m=2) [Rutherford, PoF 1973] )
(small W) . .
o |: Stabilising mechanism important
- Polarisation current (?)  [Smolyakov et al., PoP 1995; II: Bootstrap current important

Wilson et al., PoP 1996] [1l: A" important

In this talk: focus on the polarisation current; no mode evolution!
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The island polarisation current

* Island motion with respect to the plasma
[ electric field induced (Faraday)

« E x Bmotion in the island rest frame: plasma
acceleration and deceleration around the O-point
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The island polarisation current

* Island motion with respect to the plasma
[ electric field induced (Faraday)

« E x Bmotion in the island rest frame: plasma
acceleration and deceleration around the O-point

« Variation of plasma inertia balanced by a
Lorentz force provided by

-class en dvE

ool = T Polarisation current

(0 mainly carried by the ions)
[Smolyakov, PPCF 1993]

» Current continuity (1JJ=0) ensured by an
electron parallel current contributing to the
Rutherford equation
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The island polarisation current W

* Island motion with respect to the plasma
[] electric field induced (Faraday)

o £ x Bmotion in the island rest frame: plasma
acceleration and deceleration around the O-point

« Variation of plasma inertia balanced by a
Lorentz force provided by

en dvg

o = — | Polarisation current

Trapped
lons

(L mainly carried by the ions)
[Smolyakov, PPCF 1993]

» Current continuity (JJ=0) ensured by an
electron parallel current contributing to the
Rutherford equation
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Solving the drift kinetic equation W

« Analytical determination of j\U\./i.

from the drift kinetic equation possible employing the
expansion parameters W /T,

b/W < 1 (and further simplifications...)

« Drift kinetic equation in toroidal geometry with an island structure to be solved

d 0 - 0 V& 0

_f:—f—l—(’UHb-I-Vd-I-VE)‘_f_EVd f:C(f)

dt 815/, f \ dr m v T ov \
parallel motion magnetic & electric drift electric field collisions

» Representation of the distribution function: f = fo +0f = fu (¥, €) +4df
If 0f < fo: reduction of the numerical noise

d(df)

* The equation for of Is T

e
C((Sf) —Vq - VfM—%Vd -V
Solution: « df — markers (ions) — Hamiltonian equations of motion
In Boozer coordinates ( - HAGIS) [pinches et al., CPC 1998]
* Collisions: Monte Carlo procedure [Bergmann et al., PoP 2001]
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Polarisation current vs. island width W

« Simulations performed for the (3,2) mode and large-machine parameters:
R=8m, By =8 T, n; =10*° m~3, T; = 5 keV, flat temperature and density profiles

* Local effects “smeared out” by trapped particles overlapping the island

Weeed =& 1+ 5 cm
« ASDEX Upgrade:

wp ~ 0.7 =3 cm
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Polarisation current vs. 1sland width

« Simulations performed for the (3,2) mode and large-machine parameters:
R=8m, By =8 T, n; =10*° m~3, T; = 5 keV, flat temperature and density profiles

* Local effects “smeared out” by trapped particles overlapping the island

(cf. bootstrap current [poli et al., PRL 2002])
ngﬁﬂ R51'+'5;;;\\\\\\\\\\‘
« ASDEX Upgrade:

wp ~ 0.7 =3 cm

jis\ / jumoert

1.2 T T T T

inside a small island

Persistence of the bootstrap current

e ITER

| ¢ AUG, D

Large
islands

Small -
Islands -
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Polarisation current vs. 1sland width

» Simulations performed for the (3,2) mode and large-machine parameters:
R=8m,By=8T,n; =10 m=3, T; = 5 keV, flat temperature and density profiles

* Local effects “smeared out” by trapped particles overlapping the island
(cf. bootstrap current [poli et al., PRL 2002])

« ASDEX Upgrade: {

Weeed =1+ 5 cm

wp ~ 0.7+ 3 cm
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Perpendicular current vs. island rotation frequency W

« Simulations performed for the (3,2) mode and large-machine parameters:
R=8m, By =8T,n; =10 m~3, T; = 5 keV, flat temperature and density profiles

» Scan over w important because of theoretical and experimental uncertainties about its
actual value
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Perpendicular current vs. island rotation frequency W

« Simulations performed for the (3,2) mode and large-machine parameters:
R=8m, By =8T,n; =10 m~3, T; = 5 keV, flat temperature and density profiles

« Scan over w important because of theoretical and experimental uncertainties about its
actual value

 Behaviour of jovs. w puzzling (quadratic
scaling with w expected from fluid picture)

2

Jpol X dvg /dt oc w
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Perpendicular current vs. island rotation frequency W

» Simulations performed for the (3,2) mode and large-machine parameters:
R=8m, By =8T,n; =10 m=3, T; = 5 keV, flat temperature and density profiles

» Scan over w important because of theoretical and experimental uncertainties about its
actual value

» Behaviour of jovs. w puzzling (quadratic
scaling with w expected from fluid picture) 1 5107/

Jpol X dvg /dt o< w? . I > ]
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wk v,
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Perpendicular current vs. w: low frequencies

~Jpere.

\\\\\\\\\\\\\\\\

-15 -1.0 -05 0.0 0.5 1.0 15

oo/k|| Vi,

 Toroidal precession compensated by the
E x B drift (island frame) when 2wy, ~ w

1T Y {\ *
il
? | ! JELLENY
T |1 — HHTLAS
-+ . ?5 g/g;y@ 1.0

 Deviation from the perturbed magneitc
surfaces due to a combination of magnetic
and electric drift (dominates over the

polarisation drift)
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Perpendicular current vs. w: transition to higher frequencies W
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* Transition to higher frequencies » Bounce motion along the perturbed

- toroidal precession less and less important  surfaces — polarisation current sets on

20th IAEA FEC



Perpendicular current vs. w: transition to higher frequencies W

o< >

island

Flux surface coordinate Q

o
£/2m

 Transition to higher frequencies » Bounce motion along the perturbed
— toroidal precession less and less important \ surfaces — polarisation current sets on
(cf. fluid picture)
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Perpendicular current vs. w: the “‘standard’ polarisation current W
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 High frequencies: polarisation current  Superposition of island motion and
close to “fluid” behaviour — quadratic bounce motion - current reduction due to
dependence on w found slower particles
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Conclusions W

« Complete kinetic description of the ion motion necessary in order to obtain a reliable
calculation of the island polarisation current (of the bootstrap current as well)

 Polarisation-current sign influenced by competition between electric and magnetic drift

 Polarisation current strongly reduced for small island widths (comparable to
banana width)
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Current profiles from the drift kinetic equation

STl

/N

» Macroscopic quantities as moments of
the distribution function

 Flux surface averages - cells

Q4612 3 3
Ad3 1 o Adf d°rd°v
(A) = lim J - S - </A(5fd3v> ~ QQ:S:;Q
60—0 [ d3r n q_sq fod3rd3v
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Current profiles from the drift kinetic equation

S

/N

» Macroscopic quantities as moments of
the distribution function

 Flux surface averages - cells
Q46¢2
§ Adf d®rd?v

Ad3 1 _
(A) = lim J - S - </A(5fd3v> ~ QQ:S:;Q
s0—0 [ dr n S fo drd3y
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Current profiles from the drift kinetic equation W
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« Macroscopic quantities as moments of  “Radial” profiles of the polarisation
the distribution function current available!
 Flux surface averages - cells * Binning in velocity space also possible
Q4612 3 3
Ad? o Adf drdv
(A) = lim J d3 - = ! </A(5fd3v> ~ QQ:S:;Q
60—0 [ d3r n q_sq fod3rd3v
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Stabilising or destabilising? W

« Contribution of the polarisation 610 * - ‘| ya -
current to Rutherford equation 7 ar /
> d§ cos§ 410+ - VI l
Al / dn f kT T 7 A |
pol = ) Veosera ! > 2°10 ! ¥ Vs ! N .
« Parallel current obtained from ~ OfF———, 5 =
integration of Vyjy = -V, -j. .= 7! N, o A S
(j . -profile numerically available) -210 © © o ]
-4+10 i * island ", / :
0.30 0.35 0.40 0.45 0.50
r'a

* Numerical results (“standard” polarisation current) in agreement with the current
understanding (flat pressure)
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Stabilising or destabilising? W

 Contribution of the polarisation 610 * | A

current to Rutherford equation 7 /\ /o
* d¢ cos ¢ Ml LA *
COS L / [ i
Al dQ) = e [ [ ]
pol /_1 ?{ veosE + € d g 210 ! - f ! | >\& ]
B 0 . R ]
e Parallel current obtained from ™ e 3 g 3

integration of VHjH =-V1-J1 _8- 7L >\§ ¥ | X
(4 -profile numerically available) -210 " ¢ Y - ]
4010 i * lisland )
0.30 0.35 0.40 0.45 0.50
r'a

* Numerical results (“standard” polarisation current) in agreement with the current
understanding (flat pressure): polarisation current
[1 stabilising if the separatrix is excluded from the radial integration
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Stabilising or destabilising? W

 Contribution of the polarisation 610 * | ¥ /0
current to Rutherford equation 7 S\ /o
COS - / e i
A df? = -7 Fox o
O 0 — EAYE I ]
» Parallel current obtained from = A%
integration of Vyjy = -V, -j. .= 7! >\§ F oo\ X
(j .-profile numerically available) -2210 ° - % j
410 *lisland " / ]
0.30 0.35 0.40 0.45 0.50
r'a

* Numerical results (“standard” polarisation current) in agreement with the current
understanding (flat pressure): polarisation current
[1 stabilising if the separatrix is excluded from the radial integration

[] destabilising if it is included in the radial integration
[Waelbroeck and Fitzpatrick, PRL 1997]
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