Edge and Internal Transport Barrier Formations in CHS

S. Okamura, T. Minami, T. Akiyama, T. Oishi¹, A. Fujisawa, K. Ida, H. Iguchi,
M. Isobe, S. Kado², K. Nagaoka, K. Nakamura, S. Nishimura, K. Matsuoka,
H. Matsushita, H. Nakano, M. Nishiura, S. Ohshima, A. Shimizu, C. Suzuki,
C. Takahashi, K. Toi, Y. Yoshimura and M. Yoshinuma

National Institute for Fusion Science, Oroshi 322-6, Toki 509-5292, Japan 1) Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan 2) High Temperature Plasma Center, The University of Tokyo, Tokyo 113-8656, Japan

Rapported paper

Identification of Zonal Flows in CHS and JIPPT-IIU

Transport Studies in CHS (Compact Helical System)

Edge Transport Barriers (ETB) in CHS Experiment

1992 IAEA conference at Würzburg

K. Toi, S. Okamura, H. Iguchi, et al. "Formation of H-mode like transport barrier in the CHS heliotron/torsatron "

with Ohmic current control

lota(0) : 0.25	━━ 0.8
lota(a) : 0.9	→ 1.1

Present Experiment

- 1. Use standard configuration $R_{ax} = 92.1$ cm
- 2. No ohmic current drive (< 10 kA bootstrap and beam driven current)
- 3. Two NBIs both in co-injection

H-mode Transition in NBI Heated Hydrogen Discharge

Beam Emission Spectroscopy (BES) for Local Density Measurement

Heating Power Dependence of Transition

<nl>.center H.alpha <nl>.edge

 $\begin{array}{ll} \text{Magnetic Configuration}: R_{ax} = 92.1 \text{ cm}, \\ \kappa = 1.11 \quad B_t = 0.95 \text{ T} \end{array}$

ETB Formation with Improved Electron Confinement

When the density profile shape is hollow during the transition phase, improved electron confinement is simultaneously obtained with ETB for NBI plasma without ECH

SUMMARY

- 1. Formation of transport barrier at plasma edge for particle flow was observed in CHS and dynamics of edge density profile was studied.
- 2. Heating power threshold exists for the transition. It is roughly two times larger than tokamak scaling.
- 3. When the density profile is hollow shape during the transition, the improvement of electron heat transport was simultaneously observed (without ECH) for middle density plasma ($N_e \sim 3 \times 10^{19} \text{ m}^{-3}$) which is above density threshold of previous ITB experiments in CHS.

Identification of Zonal Flows in CHS and JIPPT-IIU

<u>A. Fujisawa</u>, K. Itoh, H. Iguchi, K. Matsuoka, S. Okamura, A. Shimizu, T. Minami, Y. Yoshimura, K. Nagaoka, C. Takahashi, M. Kojima, H. Nakano, S. Ohshima, S. Nishimura, M. Isobe, C. Suzuki, T Akiyama, K. Ida, S.-I. Itoh¹ and P. H. Diamond²

Y. Hamada, A. Nishizawa, T. Ido, T. Watari, K. Toi, Y. Kawasumi and JIPPT-IIU group

National Institute for Fusion Science ¹Kyushu University, RIAM ²University of California, San Diego

Zonal Flows

Is that really present in toroidal plasma?

zonal flows: regulating turbulence and transport

Two branches

- 1) Zonal flow nearly zero frequency This finding!
- 2) Geodesic acoustic mode Oscillatory (f~ C_s/R) -DIII-D(BES) -ASDEX-U(Reflectometor) -H1-heliac (probes) -JFT-2M (HIBP)

The zonal flow appears in E-field fluctuation in toroidal plasma HIBP is a strong candidate for identification of zonal flows

HIBP in JIPPT-IIU Tokamak

Coherent oscillation was found to show GAM characteristics

Dual HIBPs in CHS

Low frequency fluctuation (f<1kHz) shows a long-range correlation Zonal flow is identified

Dynamics and Structure of Zonal Flows

A numerical filter is used to remove high frequency (f>1 kHz)

on slightly different magnetic flux surfaces

Radial wavelength ~1.5 cm

Dynamics and radial structure of zonal flows are measured.

Confinement & Zonal Flow

Zonal flow amplitude is reduced after back^(ms)ansition

Summary

JIPPT-IIU

1. Coherent oscillation with GAM characteristics was found in the HIBP measurements on JIPPT-IIU tokamak.

CHS

- 1. Heavy ion beam probe successfully measured the local electric field fluctuation spectrum.
- Dual HIBPs confirm the presence of zonal flows (f<~1kHz) by showing a long-distance correlation with toroidal symmetry in electric field fluctuation
- 3. The amplitude of zonal flow is about 1 V. The radial wavelength is ~1.5 cm.
- 4. The amplitude of the zonal flows is found to be reduced in the barrier location after the transport barrier decayed.

GAM in CHS

GAM in potential & electric field

Lithium Beam Probe Measurement of Edge Density Profile

1.2

Confinement Improvement in Comparison with Scaling

New International Stellarator Scaling

H. Yamada, et al. : This conference EX/1-5

 $\tau_E^{ISS\,04\nu3} = 0.148a^{2.33}R^{0.64}P_{abs}^{-0.61}\overline{n}_e^{0.55}B^{0.85}t_{2/3}^{0.41}$

for CHS/ATF/Heliotron-E renormalization factor = 0.42

Maximum energy of each discharge is plotted as a function of average density

Confinement improvement of about 40% is given by ETB formation

