Global Gyrokinetic Simulations of Toroidal ETG Mode in Reversed Shear Tokamaks

Y. Idomura¹⁾, S. Tokuda¹⁾, and Y. Kishimoto^{1) 2)} ¹⁾Japan Atomic Energy Research Institute ²⁾Kyoto University

20th IAEA Fusion Energy Conference Vilamoura, Portugal, 1-6 November 2004

Outline

- Introduction
- Linear analysis and mixing length estimate of ETG modes
- ETG turbulence simulations in PS and RS tokamaks
- Summary

Introduction

- ETG turbulence is experimentally relevant candidate of χ_e in tokamak
 - High suppression threshold $\omega_{ExB} > \gamma$ than TEM (Stallard 1999)
 - Stiff T_{e} profile consistent with critical L_{te} of ETG (Hoang 2001)
- Results from several ETG simulations contradict with each other
 - In PS tokamaks, local flux tube toroidal GK simulations (Jenko 2002) show extremely high $\chi_e \sim 10 \chi_{GB}$ due to streamers
 - High χ_e was not recovered in local slab GF simulations (Li 2004) and large ρ^* (ρ^{*-1} ~100) global toroidal GF simulations (Labit 2003)
 - In RS tokamaks, global slab GK simulations (Idomura 2000) show χ_e suppression by ETG driven microscopic zonal flows
- To understand these qualitatively and quantitatively different results, ETG turbulence is studied using global toroidal GK simulations
 - Linear global analysis of toroidal ETG modes in PS/RS tokamaks
 - Correspondence between mixing length theory and ρ^* -scaling
 - Zonal flow and streamer formations in PS/RS-ETG turbulence

ETG turbulence simulation using GT3D

- GK toroidal PIC code based on finite element δf PIC method
- Gyrokinetic electrons with adiabatic ions $(k_{\perp}\rho_{ti} >>1)$
- Annular torus geometry with fixed boundary condition $\phi = 0$
- 1/N wedge torus model n = 0, N, 2N, 3N...
- Realistic small $\rho^* = \rho_{te}/a$ with quasi-ballooning representation
- Global profile effects $(n_e, T_e, q, 1/r)$
 - Self-consistent T_{e} , n_{e} are relaxed by heat/particle transport
 - ω_{te}^{*} -shearing effect
 - Reversed q(r) profile
- Optimized particle loading
 - energy/particle conservation

Validity of simulation is checked by conservation properties !

Realistic tokamak size $a/\rho_{te} \sim 10^4$: $k_0 \rho_{te} \sim 1$ (q=1.4) $\rightarrow m=5000$ - ~10⁴ poloidal grids are needed without QB representation - ~10² poloidal grids are enough with QB representation

Linear analysis and mixing length estimate of ETG modes

Linear ETG growth rate spectrum

Cyclone like parameters (R_0/L_{te} =6.9, η_e =3.12, *a*~8600 ρ_{te} ~150 ρ_{ti})

- Unstable region spreads over *n*~2000 (*m*~3000, $k_0\rho_{te}$ ~0.7)
- RS-ETG mode is excited around q_{min} surface (Idomura 2000)
- Almost the same γ_{max} in PS and RS configurations

- Δr of PS-ETG mode is limited by ω^* -shearing effect (Kim 1994)
- Δr of RS-ETG mode is determined by q profile (Idomura 2000)

<u>Mixing length theory and ρ^* -scaling</u>

- Mixing length theory of ETG modes in PS/RS plasmas
 - PS-ETG mode $\Delta r / \rho_{
 m te} \propto
 ho^{*-1/2}$
 - RS-ETG mode $\Delta r / \rho_{te} \propto (L_{ns} / L_n)^{-1/2} \longrightarrow \chi_{ML} / \chi_{GB} \propto \gamma_n L_{ns} / L_n$
- $\gamma_n = \gamma L_n / v_{te} \qquad L_n = (d \ln n_e / dr)^{-1} \qquad L_{ns} = (2qR_0 / q''r)^{1/2}$ • ρ^* scan of the saturation amplitude in single-*n* simulations

Fixed local parameters R_0/L_{te} =6.9, η_e =3.12 $k_0\rho_{te}$ ~0.3, a/R_0 =0.358 γ_{NL} : eddy turn over time

 $\rightarrow \chi_{\rm ML} / \chi_{\rm GB} \propto \gamma_{\rm n} \rho^{*-1}$

– Small ρ^* PS-ETG modes give order of magnitude higher saturation level than RS-ETG and large ρ^* PS-ETG modes

ETG turbulence simulations in PS and RS tokamaks (Cyclone like parameters with a/ρ_{te} ~8600)

Streamer formation in PS-ETG turbulence

• Linear phase ($t v_{te}/L_n \sim 110$)

10

• Saturation phase ($t v_{te}/L_n \sim 208$)

• Secondary streamers ($t v_{te}/L_n \sim 250$)

- PS-ETG turbulence is dominated by streamers
- Streamers are characterized by ballooning structure and $\omega \sim \omega_e^*$

11

 $T_{\rm e}$ profile is strongly relaxed in a turbulent time scale ~5 γ^{-1}

Zonal flow formation in RS-ETG turbulence

• Linear phase ($t v_{te}/L_n \sim 110$)

Secondary mode (t v_{te}/L_n ~255)

12

• Zonal flow formation ($t v_{te}/L_n \sim 380$)

- RS-ETG turbulence show different behavior across q_{min}
- Zonal flows (streamers) appear in negative (positive) shear region

<u>Xe gap structure in RS-ETG turbulence</u>

 $T_{\rm e}$ gradient is sustained above its critical value in quasi-steady state

Properties of zonal flows in k spectrum

n-spectrum in NS region

• $k_{\rm r}$ spectrum of zonal flows

14

- ZF generation similar to slab GK simulation (Idomura 2000)

- Secondary mode is excited at $k_0 \rho_{te} \sim 0.1$
- Quasi-steady ZF spectrum peaks at $k_r \rho_{te} \sim 0.1$
- Weak collisionless ZF damping for $(k_r \rho_{te})^2 <<1$ (Kim2003)
- Microscopic ZF spectrum decay with $|\phi_{kr}| \propto k_r^{-2.3}$ (Jenko2002)

<u>Summary</u>

- ETG turbulence is studied using global toroidal GK simulations
- Initial saturation levels consistent with the mixing length theory
 - Ballooning PS-ETG modes show Bohm like ρ^* -scaling
 - Slab like RS-ETG modes show gyro-Bohm like ρ^* -scaling
 - Small ρ^* PS-ETG modes give order of magnitude higher saturation level than RS-ETG and large ρ^* PS-ETG modes
- PS/RS ETG turbulences show different structure formations
 - PS-ETG turbulence is dominated by streamers
 - $T_{\rm e}$ profile is quickly relaxed by large $\chi_{\rm e}$ ~10 $\chi_{\rm GB}$
 - RS-ETG turbulence is characterized by zonal flows (streamers) in negative (positive) shear region
 - $T_{\rm e}$ profile is sustained by $\chi_{\rm e}$ gap structure
- These results suggest a stiffness of T_e profile in PS tokamaks, and a possibility of the T_e transport barrier in RS tokamaks