Electron Thermal Transport in Tokamaks: ETG or TEM Turbulence?

Z. Lin, L. Chen, Y. Nishimura, H. Qu University of California, Irvine, USA

T. S. Hahm, J. Lewandowski, G. Rewoldt, W. X. Wang Princeton Plasma Physics Laboratory, USA

> P. H. Diamond, C. Holland University of California, San Diego, USA

F. Zonca Associazione EURATOM-ENEA, Frascati, Italy

Y. Li

University of Science and Technology of China, China

Electron Temperature Gradient (ETG) Turbulence

- Experimental search for origin of electron transport: inconclusive evidence
 - Ion scale (ρ_i): TEM/ITG
 - Collisionless skin depth (c/ω_{pe}): CDBM or electromagnetic ETG
 - Electron scale (ρ_e): electrostatic ETG
- ETG diagnostics being installed on DIIID, NSTX, CMOD, ...
- ETG turbulence simulations: contradictory results
 - Flux-tube simulations: electrostatic streamers drive large electron transport [Jenko et al, PoP2000; Dorland et al, PRL2000]
 - Streamer size is comparable to simulation box size, violating fundamental assumption of flux-tube simulation using radially periodic boundary condition
 - Radially nonlocal fluid simulations: transport an order of magnitude smaller [Labit & Ottaviani, PoP2003; Li & Kishimoto, PoP2004]

Key Issues in ETG Turbulence

- Flux-tube gyrokinetic continuum simulation [Dorland & Jenko, 2000]
 - Electrostatic streamers drive large electron transport when magnetic shear s>0
 - Saturation via a Kelvin-Helmholtz type 2nd instability
- Unresolved issues in ETG turbulence
 - Correlation between streamer size and transport level
 - Saturation mechanism
- Global gyrokinetic particle simulation [This paper]
 - Streamers do not drive large transport: nonlinear particle dynamics
 - Saturation via nonlinear toroidal coupling: nonlocal interaction in k-space

Gyrokinetic Toroidal Code (GTC) Simulation

- GTC global field-aligned mesh: efficient for toroidal eigenmode
 - Reduces computation by $n \sim 10^3$
 - Respects physical periodicity
 - Keeps radial variations of q(r)
- Gyrokinetic particle-in-cell approach
 - Efficient sampling of 5D phase space
- Massively parallel computing
 - Device size up to DIIID
 - ► All ETG modes *n*=0~10³
- Resources: US DOE SciDAC
 - GPS Center (PI: W. W. Lee)
 - GTC Team (team leader: Z. Lin): PPPL, UCI, UCLA & Columbia U.

GTC mesh

ETG Turbulence Structure Nonlinearly Generated

- Poloidal spectrum down shifts from linear $k_{\theta}\rho_{e} \sim 0.3$ to nonlinear $k_{\theta}\rho_{e} \sim 0.12$
 - Over 10 linear growth times
- Energy containing modes grow faster than linearly most unstable modes
 - Saturation via nonlinear mode coupling
 - Streamers nonlinearly generated
- Low-*n* modes driven up first before energy containing modes
 - Nonlocal interaction in k-space: not inverse cascade [Hasegawa & Mima, PRL1977]

ETG Streamer Size >> Electron Radial Excursion

- Streamers at $t=20/\gamma_0$ after saturation
- Streamer size scales with device size
- Eddy turnover time $\tau \sim 17/\gamma_0$
 - $\blacktriangleright \gamma_{nl} << \gamma_0$
- Electron orbit during $20/\gamma_0$
- Small perturbation to parallel motion

ETG Streamers Do Not Drive Large Transport

- Electron radial excursion is diffusive: $\Delta r \sim 80\rho_e$ for $\Delta t = 20/\gamma_0$
- Intensity and transport independent of streamer size: gyroBohm scaling
 - $\chi_e = 3.2 \chi_{GB} \ll$ flux-tube or experimental value
- Particles do not rotate around streamers
 - Radial diffusions cause loss of parallel resonant condition $\omega k_{\parallel}v_{\parallel} = 0$ due to q(r)
- "Mixing length theory" does not properly describe collisionless plasmas
 - Plasma turbulence: particles ≠ velocity field (streamers)
 - Fluid turbulence: fluid element = velocity field

Nonlinear Toroidal Coupling

- Three forms of nonlinear interaction of toroidal eigenmodes
 - Coupling of two eigenmodes: nonlinear toroidal coupling
 - Coupling to (0,0): zonal flow generation
 - Coupling to (0,1): parallel mode structure
- Zonal flow dominates in ITG/TEM: primary balances 2nd instability
 - E X B drift nonlinearity $\gamma_{nl} \sim \gamma_0$
- ETG: nonlinear toroidal coupling
 - Polarization drift nonlinearity $\gamma_{nl} \ll \gamma_0$
 - Single mode saturates: higher amplitude
- Parallel streamers cannot couple in slab geometry
 - k₁ x k₂ =0 since k₁ // k₂
- Toroidal streamers can couple
 - $k_r = s\theta k_{\theta}$: localized *m*-harmonics

Two ETG modes

Spectral transfer via Nonlinear Toroidal Coupling

- Generation of low-*n* quasi-mode $(n_1, m_1) + (n_2, m_2) \Rightarrow (\Delta n, \Delta m) = (n_2 - n_1, m_2 - m_1)$
- Energy transfer to nonlinear streamers $(n_1, m_1) + (\Delta n, \Delta m) \Rightarrow (n_1 - \Delta n, m_1 - \Delta m)$
- Transfer facilitated by low-*n* quasi-mode
 - Nonlocal in k-space, "Compton Scattering"
 - $\lambda_{\parallel} \sim qRn^{1/2}$: no ballooning structure
- Streamers are nonlinearly generated
 - ▶ λ_{||}~qR
- Need to keep all toroidal modes

Nonlinear Gyrokinetic Theory of ETG Saturation

• Nonlinear gyrokinetic equation + quasi-neutrality condition

$$\frac{e}{T_e}\frac{\partial}{\partial t}L_k\delta\phi_k = \alpha_e \frac{c}{B}\rho_e^{2}(\vec{k}_{\perp}\times\vec{k}_{\perp})\cdot\vec{e}_{\parallel}(\vec{k}_{\perp}^{2}-\vec{k}_{\perp}^{2})\delta\phi_k\delta\phi_{k}$$

- Generation of low-*n* quasi-mode: contribution from all unstable modes $\left(\frac{\partial}{\partial t} + \gamma_{l}\right) |a_{l}(t)| = 4\left(\hat{\alpha}_{e} / \tau\right) q_{s} \int k_{\theta n}^{3} I_{n} dn$
- Dynamics of unstable modes: free streaming in *n*-space $v_n(a_l) < 0$ $(\frac{\partial}{\partial t} - 2\gamma_n)I_n + v_n(a_l)\frac{\partial}{\partial n}I_n = 0$
- Theory confirms qualitatively GTC simulations of nonlinear coupling
 - Spectral transfer to nonlinear streamers via nonlinear toroidal coupling
 - Spectral transfer facilitated by low-*n* quasi-mode: $k_{ll} \sim 0$ and high k_r
 - Nonlinear toroidal coupling controls poloidal spectrum

Turbulence Eddy Size vs Transport Scaling

- ETG: radial streamers & gyroBohm transport scaling
- ITG: isotropic eddy & transition from Bohm to gyroBohm [Lin et al, PRL2002]
- Contradict "mixing length" & "local conjecture" [Lin et al, IAEA2002]
- Transport driven by local intensity [Lin & Hahm, PoP2004; PRL1999]
- Intensity not always determined by eddy size
 - ETG: nonlinear toroidal coupling [this talk]
 - ITG: spreading [Hahm et al, PPCF2004; Chen et al, PRL2004; Zonca et al, PoP2004]
- Transport process de-couples from saturation mechanism
 - Transport: wave-particle interaction
 - Fluctuation: wave-wave coupling

3.2

Conclusion

Global gyrokinetic particle simulation and nonlinear gyrokinetic theory

- ETG transport is well below experimental χ_e , or flux-tube results
- ETG instability saturates via nonlinear toroidal coupling
- Our results are in contrast to recent finding of flux-tube simulations that ETG is responsible for electron thermal transport in tokamaks

