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* Experimental search for origin of electron transport: inconclusive evidence
» lon scale (p): TEM/ITG
» Collisionless skin depth (c/@,,): CDBM or electromagnetic ETG
» Electron scale (p,): electrostatic ETG

 ETG diagnostics being installed on DIIID, NSTX, CMOD, ...

o ETG turbulence simulations: contradictory results

» Flux-tube simulations: electrostatic streamers drive large electron transport
[Jenko et al, PoP2000; Dorland et al, PRL2000]

> Streamer size is comparable to simulation box size, violating fundamental
assumption of flux-tube simulation using radially periodic boundary condition

» Radially nonlocal fluid simulations: transport an order of magnitude smaller
[Labit & Ottaviani, PoP2003; Li & Kishimoto, PoP2004]



o Flux-tube gyrokinetic continuum simulation [Dorland & Jenko, 2000]
» Electrostatic streamers drive large electron transport when magnetic shear s>0
» Saturation via a Kelvin-Helmholtz type 2" instability

 Unresolved issues in ETG turbulence
» Correlation between streamer size and transport level
» Saturation mechanism

» Global gyrokinetic particle simulation [This paper]
» Streamers do not drive large transport: nonlinear particle dynamics
b Saturation via nonlinear toroidal coupling: nonlocal interaction in k-space

ETG streamers



GTC global field-aligned mesh: efficient for toroidal eigenmode
» Reduces computation by n~103
» Respects physical periodicity

» Keeps radial variations of q(r)

Gyrokinetic particle-in-cell approach
» Efficient sampling of 5D phase space

Massively parallel computing

» Device size up to DIIID
» All ETG modes n=0~103

Resources: US DOE SciDAC
» GPS Center (PI: W. W. Lee)

» GTC Team (team leader: Z. Lin):
PPPL, UCI, UCLA & Columbia U.

GTC mesh



« Poloidal spectrum down shifts from linear k40,~0.3 to nonlinear k ,0,~0.12
» Over 10 linear growth times

* Energy containing modes grow faster than linearly most unstable modes
» Saturation via nonlinear mode coupling

» Streamers nonlinearly generated

 Low-n modes driven up first before energy containing modes

» Nonlocal interaction in k-space: not inverse cascade [Hasegawa & Mima, PRL1977]
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Electron radial excursion is diffusive: Ar~80p, for At=20/y,

Intensity and transport independent of streamer size: gyroBohm scaling

P 2.=3.2 ygg << flux-tube or experimental value

Particles do not rotate around streamers

» Radial diffusions cause loss of parallel resonant condition a-kv,=0 due to q(r)

“Mixing length theory” does not properly describe collisionless plasmas

» Plasma turbulence: particles # velocity field (streamers)




Three forms of nonlinear interaction of toroidal eigenmodes
» Coupling of two eigenmodes: nonlinear toroidal coupling
» Coupling to (0,0): zonal flow generation
» Coupling to (0,1): parallel mode structure

Zonal flow dominates in ITG/TEM: primary balances 2" instability

» E X B drift nonlinearity v, ~ v,

ETG: nonlinear toroidal coupling

» Polarization drift nonlinearity vy, <<y,

» Single mode saturates: higher amplitude

Parallel streamers cannot couple in
slab geometry

» k, x k, =0 since k, //k,
Toroidal streamers can couple
» k=sck,: localized m-harmonics

Two ETG modes
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Generation of low-n quasi-mode

(nl’ ml) + (nz’ mz) = (An’ Am) - (nz — N, M, = ml) Pnm

Energy transfer to nonlinear streamers

Transfer facilitated by low-n quasi-mode

» Nonlocal in k-space, “Compton Scattering” t400L7/ve

» 2,~gRn%2: no ballooning structure /
65

Streamers are nonlinearly generated 30
» A4~aR

Need to keep all toroidal modes




Nonlinear gyrokinetic equation + quasi-neutrality condition
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Generation of low-n quasi-mode: contribution from all unstable modes
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Dynamics of unstable modes: free streaming in n-space v,(a,)<0
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Theory confirms qualitatively GTC simulations of nonlinear coupling
» Spectral transfer to nonlinear streamers via nonlinear toroidal coupling
» Spectral transfer facilitated by low-n quasi-mode: k~0 and high k;

» Nonlinear toroidal coupling controls poloidal spectrum



ETG: radial streamers & gyroBohm transport scaling
ITG: isotropic eddy & transition from Bohm to gyroBohm [Lin et al, PRL2002]
Contradict “mixing length” & “local conjecture” [Lin et al, IAEA2002]

Transport driven by local intensity [Lin & Hahm, PoP2004; PRL1999]

Intensity not always determined by eddy size
» ETG: nonlinear toroidal coupling [this talk]
» ITG: spreading [Hahm et al, PPCF2004; Chen et al, PRL2004; Zonca et al, PoP2004]

Transport process de-couples from saturation mechanism
» Transport: wave-particle interaction

» Fluctuation: wave-wave coupling

gyroBohm




Global gyrokinetic particle simulation and nonlinear gyrokinetic theory

ETG transport is well below experimental y,, or flux-tube results
ETG instability saturates via nonlinear toroidal coupling

Our results are in contrast to recent finding of flux-tube simulations
that ETG is responsible for electron thermal transport in tokamaks









