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Sufficient suppression of the Rayleigh-Taylor
Instability

1. Increases compressed density.

2. revives an old ignition idea:

Super velocity (10 8 cm/s) implosion can configurate
a hot-spark without a main fuel so as to ignite at very
low laser energy (30-100 kJ).

This idea was rejected by two major criticisms:
e The Rayleigh-Taylor instability limits the
maximum implosion velocity.
* No pathway towards high gain.



A pathway towards high gain

— Impact ignition —

| aser
t| @ O(nsec)

el e e e D
-.:_ --------

oy Compressed iy
. i ko

Ll
L e
----- ey
L aser S, AT
Rt | oo ey it

QA

L L T TR

X-ray radiation *

1) High Gain
2) Simple Physics

3) Low Cost

Murakami, submitted to PRL



2D Hydrodynamic Simulation
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Major obstacle against to super-vilocity acceleration

Rayleigh-Taylor instabilit y
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Suppression of RT —Natural ablation



Our strategy is to measure all physical quantities
to test our understanding of ablative RT instability. @
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Growth rate (1/ns)

Measurements all to gether determine beta-coefficient. @
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Suppression of RT —Double Ablation
Tow color irradiation



Double Ablation Target

We considered the RT growth only at the radiative ablation front,
because grad r grad p is almost positive, namely RT stable, at S. Fufioka

the electron-conduction ablation front. (ILE. Osaka)

2D simulation (RAICHO¥)

* N. Ohnishi et al., JQSRT 71, 551 (2001)

1D simulation (ILESTA-1D)
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Physical mechanism which makes the electron-conduction ablation

front to be RT stable is now under investigation.




RT exp. with shorter wavelength perturbation

Growth of the perturbations in the CHBr target is strongly
suppressed in comparison with that in the CH target.

18-mm thick CHBr
I, =25mm, a;=0.3 mm

25-mm thick CH
I, =20mm, a;=0.2 mm
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The theory predicts the RT growth ratetobe 1.5ns  in

the CHBr target. This value is large enough to amplify
the perturbation to be observable.




Density profile

Peak density of the CHBr target is not lowered drastically in
comparison with that of the CH target.
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Differences between the experimental result and the simulation
may indicate a more detail atomic model is required for

reproducing the full characteristics of the density profile in a CHBr
target



Reduction of Rayleigh-Taylor Instability Growth with Muliti-Color Laser Irradiation

Non-local electron heats the ablation surface
and lengthen density scale length
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Reduction of Rayleigh-Taylor Instability Growth with Multi-Color Laser Irradiation

Rayleigh-Taylor growth rate is reduced by
two-color laser irradiation.
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Preliminary experiments for
super velocit y



4 x 107 -cm/s velocity has been achieved even at

moderate irradiance.
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108 cm/s-velocity must be achieve, if
 RT-reduced targets
* higher irradiance .




Djssipation by wall roughness exceeds PdV work

e A sinusoidal pertubation acts on the foil as an
alternated piston. 1D piston (CHIC code)
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Effects of Magnetic Field, Sheared
Flow and Ablative Velocity on

the Rayleigh - Taylor Instability

D. Li, W. L. Zhang, Z. W. Wu
Department of Modern Physics
University of Science and Technology of China



Prof. Li et al. have found a new formula
of the RT growth rate.

v =[gkA. + kS’ (1 - A2)—k*u’,]'"”
g ! X

Rayleigh-Taylor Kelvin-Helmholtz B-friction
A 1= Atwood # d, = relative speed u,n = Alfvén speed

This formula must be useful for good understanding of
the RT instability at the deceleration phase, where large
shear flow and strong magnetic fields interfere with
short-wavelength RT instability.



summary

 New suppression schemes

—Double Ablation

—Two Color Irradiation
are the key element not only for higher density
compression but for new impact-ignition.

e Super velocity of 10 8 cmi/s should be demonstrated using
these RT-suppression schemes.

e You are welcom to discuss at a poster
IF/P7-31 (Sat.) for impact-ignition
IF/1-1Rb (Sat.) for the magnetic -sheared-ablative RT.



New concepts have been generated every 10 years.
1. Early 60's: Birth of laser fusion

2. Early 70's: Implosion

3. Late 70's: Hot spark ignition

4. Early 90's: Fast ignition

5. Early 2000's: Impact ignition?



Spare Viewgraphs



Confinement time = Fuel thick / sound velocity

The following two kinds of structure have the
same fusion gain.
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New Ignition Scheme: Impact Ignition Makes A
Pathway towards High Gain.
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Gain curves for Impact Ignition Targets
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We need high density compression as well
as efficient heating.

Required energy for ignition is given by

3
_4p 3 _4p(rR
hE|aser —ng r &, 3p(r2)

where

5 ppressed
rR 2 a particle range = 0.3 g/cm e

e, = 2(3/2)T/m4;=1.15 GJ/g @T=10 keV.

To achieve fast ignition with reasonable size of
Ejqser 2 10's kJ, we need

o efficient heating of h 2 0.2-0.3

 high density of r 2 1000-1500 times liquid density.




Recent fast ignition exp't has demonstrated efficient
heating of h 2 0.2 at the ignition equivalent laser intensity.
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High density compression of

density needs to be demonstrated.

This is about three
times higher
density than that
ever achieved.

Si activation data
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Ignition target design

Target consists of 3 layered ablator (CHBr/CH/CHBYr) yields

thermonuclear energy of 41 MJ in the NIF-direct (1.8 MJ). (ISL-EFléJ)iokE)
. Usaka
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a probable mechanism

The dynamic overpressure is enhanced by @

modulation of cut-off surface. ILE Osaka

The laser-absorption region is modulated by the ablative flow.
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Convergence effect of laser

The stabilization of RT growth by the @
convergence effect of incident laser ILE Osaka
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Discussion
The calculation result of model suggests the stabilization

of RT growth on the medium perturbation wavelengths. ILE Osaka
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h-Taylor Instability Growth with Muliti-Color Laser Irradiation

- Experimental setup -
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Reduction of Rayleigh-Taylor Instability Growth with Multi-Color Laser Irradiation

Multi-color irradiation sustains the peak density
of the ablating target

The density profile of laser-driven polystyrene
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RT exp’t with perturbed CHBr target

Growth of perturbations in a CHBr target is lower than that
of the CH target.

* R. Betti et al., PoP 5, 1446 (1998)
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RT exp’t with perturbed CHBr target

The electron-conduction ablation front is almost RT stable,

while averaged amplitude of perturbations (  / =50 mm, a, =

0.3 mm) is 12 mm at the radiative ablation front. S. Fujioka

(ILE. Osaka)
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1D Radiation-hydrodynamic simulation shows that hyper
velocities ~ 108 cm/s can be achieved under proper conditions.
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