

Improved Structure and Long-life Blanket Concepts for Heliotron Reactors

A. Sagara, S. Imagawa, O. Mitarai^{*}, T. Dolan, T. Tanaka,
Y. Kubota, K. Yamazaki, K. Y. Watanabe, N. Mizuguchi,
T. Muroga, N. Noda, O. Kaneko, H. Yamada, N. Ohyabu,
T. Uda, A. Komori, S. Sudo, and O. Motojima

National Institute for Fusion Science, Japan *Kyushyu Tokai University, Kumamoto, Japan

> 20th IAEA Fusion Energy Conference 1 - 6 November 2004 Vilamoura, Portugal

Presentation Outline

1. Introduction of FFHR

2. New design approach
The size is increased
Why ?

3. Conclusions

LHD-type D-T Reactor FFHR

0 0

Many advantages : > current-less > Steady state > no current drive power > Intrinsic divertor

LHD operation: 1998 ~

LIID

LHD-type D-T Reactor FFHR

(B₀ H

ൽ

Many advantages : > current-less > Steady state > no current drive power > Intrinsic divertor

LHD operation: 1998 ~

 $R = 3.6m B = 100\% \Phi = 0$

Selection of lower Y

 $=\left(\frac{\mathrm{m}\,\mathrm{a_{c}}}{\mathrm{1}\,\mathrm{R}}\right)$

To reduce mag. foop force
To expand blanket space

1993 FFHR-1 (*I=3, m=18*) *B=20, Bt=12T, β=0.7%* 1995 FFHR-2 (*I=2, m=10*) *B=10, Bt=10T, β=1.8%*

However, direction of compact design has engineering issues

- Insufficient tritium breeding ratio (TBR)
- Insufficient nuclear shielding for superconducting (SC) magnets,
- Replacement of blanket due to high neutron wall loading
- Narrowed maintenance ports due to the support structure for high magnetic field

Blanket space limitation

Replacement difficulty

New design approach is proposed to overcome all these issues

- Introducing a long–life & thicker breeder blanket
- Increasing the reactor size with decreasing the magnetic field
- Improving the coils-support structure

Blanket space

Replacement

Proposal and Optimization of STB (Spectral-shifter and Tritium breeder Blanket)

• Lifetime of Flibe/RAFS liquid blanket in FFHR ~ 15MWa/m²

Neutron wall loading factor 3
 in FFHR2 in 30 years 1.5MW/m² x 30y = 45MWa/m²

Proposal and Optimization of STB (Spectral-shifter and Tritium breeder Blanket)

He effect

12 14 16 18

effect (?)

20

1400 **Reduced Activation Ferritic Steel** Lifetime of Flibe/RAFS liquid ပ္တ 1200 Thermal creep (1% creep strain blanket in FFHR ~ 15MWa/m² 1000 under applied stress $s_v/3$) Temperature 800 Void swelling (>1%) factor 600 Neutron wall loading operation 400 in FFHR2 in 30 years 200 **DBTT** increase by irradiation $1.5MW/m^2 \times 30y = 45MWa/m^2$ 10 Neutron wall loading MWa/m²

Tritium breeding

Shielding efficiency

NIFS

Results and Key R&D Issues

Results :

- ✓ Fast neutron flux at the first wall is factor 3 reduced.
- \checkmark Local TBR > 1.2 is possible.
- ✓ Fast neutron fluence to SC is reduced to 5x10²²n/m² (Tc/Tco>90% in 30y)
- Surface temperature < 2000°C(~mPa of C) is possible

Key R&D issues :

- (1) Impurity shielding in edge plasma
- (2) Neutron irradiation effects on tiles at high temperature
- (3) Heat transfer enhancement in Flibe flow

Required conditions :

Neutron wall loading < 1.5MW/m² Design parameter

- Blanket thickness > 1100 mm
- $> \lambda$ for C-Be-C tiles
 - > 100W/mK
- Super-G sheet for tiles joint > 6kW/m²K
- Heat removal by Flibe > 1MW/m²

Improved design parameters

	Design parameters		LHD	FFHR2	FFHR2m1	FFHR2m2
\sim	Polarity	1	2	2	2	2
Improved input Required Blanket	Field periods	m	10	10	10	10
	Coil pitch parameter	γ	1.25	1.15	1.15	1.25
	Coil major Radius	Rc m	3.9	10	14.0	17.3
	Coil minor radius	ac m	0.98	2.3	3.22	4.33
	Plasma major radius	Rp m	3.75	10	14.0	16.0
	Plasma radius	ap m	0.61	1.2	1.73	2.80
	Blanket space	Δ m	0.12	0.7	1.2	1.1
	Magnetic field	B0 T	4	10	6.18	4.43
	Max. field on coils	Bmax T	9.2	13	13.3	13
space	Coil current density	j MA/m2	53	25	26.6	32.8
Required ->>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	Weight of support	ton	400	2880	3020	3210
	Magnetic energy	GJ	1.64	147	120	142
	Fusion power	$P_{\rm F}$ GW		1.77	1.9	3.0
	Neutron wall load	MW/m2		2.8	1.5	1.3
	External heating power	Pext MW		100	80	100
	α heating efficiency	ηα		0.7	0.9	0.9
	Density lim.improvement			1	1.5	1.5
$\tau_{ISS95} = 0.26P^{-0.59}\overline{n}_e^{0.51}B^{0.83}R^{0.65}a^{2.21}t_{2/3}$	^{D4} H factor of ISS95			2.53	1.92	1.68
	Effective ion charge	Zeff		1.32	1.34	1.35
	Electron density	ne(0) 10^19 m	-3	28.0	26.7	19.0
	Temperature	Ti(0) keV		27	15.8	16.1
	$<\beta>=2*n*T/(B^2/\mu)$ (parabolic distribution)			1.8	3.0	4.1
	COE	Yen/kWh		21.00	14.00	9.00

Improved Design of Coil-supporting Structure (1/2)

- > W/H = 2 & H/a_c determined by
- Bmax ~ 13 T for such as Nb₃Sn or Nb₃Al.
- > Then J=25~35A/mm²
- Poloidal coils layout as for stored magnetic energy and stray field

- Cylindrical supporting structure under reduced magnetic force, which facilitates expansion of the maintenance ports.
- Helical coils supported at inner, outer and bottom only.

Electromagnetic Force (MN/m)

outer

top

12

24

ANSYS 5.6

OCT 24 2004

Improved Design of Coil-supporting Structure (2/2)

- The maximum stress can be reduced less than 1000 MPa (<1.5Sm)
- This value is allowable for strengthened stainless steel. Electromagnetic forces on a helical coil of FFHR2m1.

Replacement of In-Vessel Components (1/2)

- Large size maintenance ports at top, bottom, outer and inner sides.
- The vacuum boundary located just inside of the helical coils and supporting structure.
- Blanket units supported on the permanent shielding structures, which are mainly supported at their helical bottom position.

Replacement of In-Vessel Components (2/2)

Sanara

Proposal of the "Screw coaster" concept to replace STB armor tiles

- Replacement of bolted tiles during the planned inspection period.
- Using the merit of helical structure, where the normal cross section of blanket is constant.
- Toroidal effects can be adjusted with flexible actuators.

Cost Estimation Using PEC code developed in NIFS.

Calibrated with ARIES-AT, ARIES-SPPS, resulting in good agreement within 5%. (T.J.Dolan,K.Yamazaki, A.Sagara, in press in Fusion Science & Tech.)

- COE's for FFHR2, FFHR2m1 and FFHR2m2 decreases with increasing the reactor size, because the fusion output increases in ~ R², while the weight of coil supporting structure increases in~ R^{0.4} (not ~R³).
- When the blanket lifetime ~ 30y, the COE decreases ~20% due to higher availability and lower cost for replacement.

Conclusions

Design studies on FFHR have focused on new design approaches to solve the key engineering issues of blanket space limitation and replacement difficulty.

- (1) The combination of improved support structure and long–life breeder blanket STB is quite successful.
- (2) The "screw coaster" concept is advantageous in heliotron reactors to replace in-vessel components.
- (3) The COE can be largely reduced by those improved designs.
- (4) The key R&D issues to develop the STB concept are elucidated.

 Helical devices have radiative density limit which scales with square root of input power:

 $n_{H-E} \sim (PB/V)^{0.5}$ (H-E Sudo)

• LHD has a density limit which is more than 1.4 times the Sudo limit

B.J. Peterson et al. NIFS 20th IAEA FEC EX6-2

Tritium also pumped out

Dose effects of fast neutrons on SC magnets

By J. Roth (1984)

"TNT loop" (Tohoku-NIFS Thermofluid loop) has been operated using HTS (Heat Transfer Salt, T_m= 142°C)

- Results are converted into Flibe case at the same Pr=28.5 (Tin=200°C for HTS and 536°C for Flibe)
- Same performance as turbulent flow is obtained at one order lower flow rate.
- This is a big advantage for MHD effects and the pumping power.

TNT loop ~ 0.1m³, < 600°C

(Orifice flange

Dump Tank

1700 [mm

