Improved operation and modeling of the **Sustained Spheromak Physics eXperiment**

R.D. Wood, B.I. Cohen, D.N. Hill, R.H. Cohen, S. Woodruff, H.S. McLean, E.B. Hooper, L.L. LoDestro, L.D. Pearlstein, D.D. Ryutov, B.W. Stallard, and M.V. Umansky

Lawrence Livermore National Laboratory, Livermore, Ca.

C.T. Holcomb and T. Jarboe University of Washington, Seattle, Wa.

C.R. Sovinec and G.A. Cone, University of Wisconsin, Madison, Wi.

In collaboration with Florida A&M University, Tallahassee, Fl. California Institute of Technology, Pasadena, Ca.

SSPX was built to examine energy confinement and field generation

SSPX Operations:

-The best confinement in SSPX ($\chi_E \sim 10m^2/s$) is obtained with controlled decay.

–Peak temperature of >200 eV (peak β_e ~5-10%) observed when magnetic fluctuations are small (< 1%).

-Slow formation and double-formationpulse discharges yield the highest magnetic field in SSPX.

NIMROD simulations

-Show good closed nested flux surfaces

-Electron temperatures similar to experiment

Formation: In SSPX, spheromak formation does not show a strongly kinked central column

- In SSPX the *n*=1 mode is
 - Always observed during formation
 - Converts injected toroidal flux into poloidal flux
 - $\sim 10\% (\delta B_p/B_p)$ effect at the midplane edge

constrains the amplitude of the n=1 mode

> SSPX Photos C. Romero-Talamas Caltech

Formation: simulation of spheromak shows the change in field topology is due to reconnection processes

Magnetic fieldline topology changes as azimuthally-averaged poloidal flux is generated

- During "bubble blowing", fieldlines bend and rotate toroidally without a change in topology
- Reconnection changes fieldline topology – shown are knotted lines resulting from breaking and attaching to other lines

Improved confinement obtained with increased time to heat and reduced fluctuations (controlled decay)

- Ohmic heating to higher T_e made possible by longer pulses
- Optimizing edge current relative to injector flux reduces fluctuations (<1%); maintain edge current to keep current profile flat to slightly peaked

Improved wall conditioning lowers density; essential to high temperature

NIMROD simulations close to matching experiment

- Fluctuations are lower during sustainment
- As current ramps down at the end of the shot, a large amplitude *n*=2 mode observed in both experiment and simulation

- Improved NIMROD simulations with
 - Spitzer-Braginski resistivity and parallel thermal conduction
 - more detailed representation of gun geometry
 - matching current-drive time history with experiment

NIMROD simulations show regions of closed flux surfaces and T_e profiles consistent with experiment

- Steep gradients in measured electron temperature profile are observed during sustainment
- NIMROD simulations show regions of good confinement surrounded by islands and confined chaotic lines and then open field lines.
- With parallel heat conductivity >> perpendicular heat conductivity, the electron temperature contours tend to align with the magnetic field lines.

SSPX Shot 10048

 $\chi_{\rm F} \sim 10 \ {\rm m}^2/{\rm s}$

Best measured

confinement:

In SSPX, efficient magnetic field build-up is a key element to higher temperatures

- Slow–start formation has steadily growing B with B/Igun = 0.75 T/MA.
- Double-pulse also produces highest fields of 0.78 T/MA

- Double-pulse and slow formation discharges obtain higher magnetic field per unit current than fast formation
- Standard fast formation followed by sustainment yields maximum B/I_{gun}~0.65 T/MA.

 Modification of bank will provide three important conditions:

- Better control of operation near threshold (operation near threshold produces lowest fluctuations and highest T_e)
- Multiple pulse experiments.
- A way to increase total pulse length incrementally.

•SSPX Operations:

–The best confinement in SSPX (χ_{E} ~10m²/s) is obtained with controlled decay.

–Peak temperature of >200 eV (peak $\beta_e \sim 5-10\%$) observed when magnetic fluctuations are small (< 1%).

-Slow formation and double-formation-pulse discharges yield the highest magnetic field in SSPX.

•NIMROD simulations

-In good agreement with experiment

-Multi-pulse simulations underway

-Will be used to further explore spheromak physics and gun geometries