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SSPX was built to examine energy confinement and 
field generation

•SSPX Operations:
–The best confinement in SSPX 
(χE~10m2/s) is obtained with controlled 
decay.

–Peak temperature of >200 eV (peak βe 
~5-10%) observed when magnetic 
fluctuations are small (< 1%).

–Slow formation and double-formation-
pulse discharges yield the highest 
magnetic field in SSPX.

•NIMROD simulations 

–Show good closed nested flux surfaces

–Electron temperatures similar to 
experiment

1 meter
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Formation: In SSPX, spheromak formation does not 
show a strongly kinked central column

• Formation approximately 
axisymmetric with reconnection 
near coaxial gun region 

• Fast (4µsec) camera images show:
– Current sheet extending into 

flux conserver
– Formation with a central 

column that is not strongly 
kinked

• In SSPX, the flux conserver 
constrains the amplitude of the 
n=1 mode 
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SSPX Photos  
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Caltech
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• In SSPX the n=1 mode is
– Always observed during formation
– Converts injected toroidal flux into poloidal flux
– ~10% (δBp/Bp) effect at the midplane edge
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Formation: simulation of spheromak shows the change 
in field topology is due to reconnection processes

Before reconnection

After/during reconnection

Inverted

• Magnetic reconnection 
converts toroidal flux into
poloidal flux in both isolated 
events and a “steady”
burbling

• Examination of the isolated 
events shows a change in 
field topology in the growth 
of mean-field flux contours 

• Reconnection is generated 
by current sheets with 
negative λ = µ0j•B/B2 ––
These are strongest near the 
X-point of the mean-field 
spheromak
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Magnetic fieldline topology changes as 
azimuthally-averaged poloidal flux is generated

• Reconnection changes fieldline 
topology – shown are knotted lines 
resulting from breaking and attaching 
to other lines

• During “bubble blowing”, fieldlines 
bend and rotate toroidally without a 
change in topology
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Improved confinement obtained with increased time 
to heat and reduced fluctuations (controlled decay)
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• Ohmic heating to higher Te made possible by 
longer pulses 

• Optimizing edge current relative to injector 
flux reduces fluctuations (<1%); maintain 
edge current to keep current profile flat to 
slightly peaked

λg=µ0Ig/Φg

(normalized 
current density)

λg=λfc

Ig constant

• Improved wall conditioning lowers density; 
essential to high temperature
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NIMROD simulations close to matching experiment

• Improved NIMROD simulations with
– Spitzer-Braginski resistivity and 

parallel thermal conduction 
– more detailed representation of 

gun geometry 
– matching current-drive time 

history with experiment

Shot 12560 NIMROD: lam06

• Fluctuations are lower during 
sustainment

• As current ramps down at the end of the 
shot, a large amplitude n=2 mode 
observed in both experiment and 
simulation
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NIMROD simulations show regions of closed flux 
surfaces and Te profiles consistent with experiment 

• Steep gradients in measured electron temperature 
profile are observed during sustainment

• NIMROD simulations show regions of good 
confinement surrounded by islands and confined 
chaotic lines and then open field lines.

• With parallel heat conductivity >> perpendicular 
heat conductivity, the electron temperature 
contours tend to align with the magnetic field lines.

• Best measured 
confinement:

χE ~ 10 m2/s

t=2.7 ms
SSPX Shot 10618

Magnetic Field lines
NIMROD

Te contours
NIMROD

t=2.25 ms

123 eV

90 eV 10 eV

SSPX Shot 10048
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In SSPX, efficient magnetic field build-up is 
a key element to higher temperatures

• Slow–start formation has steadily 
growing B with B/Igun= 0.75 T/MA.

• Double-pulse also produces 
highest fields of 0.78 T/MA

• Double-pulse and slow formation discharges 
obtain higher magnetic field per unit current 
than fast formation

• Standard fast formation followed by
sustainment yields maximum B/Igun~0.65 T/MA.
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Future work includes modifying the capacitor bank 
to explore magnetic field build up

• Modification of bank will provide three 
important conditions:

– Better control of operation near 
threshold (operation near threshold 
produces lowest fluctuations and highest Te)

– Multiple pulse experiments.

– A way to increase total pulse length 
incrementally.

Present bank
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Summary

•SSPX Operations:
–The best confinement in SSPX (χE~10m2/s) is obtained with controlled 
decay.

–Peak temperature of >200 eV (peak βe ~5-10%) observed when magnetic 
fluctuations are small (< 1%).

–Slow formation and double-formation-pulse discharges yield the 
highest magnetic field in SSPX.

•NIMROD simulations 

–In good agreement with experiment

–Multi-pulse simulations underway

–Will be used to further explore spheromak physics and gun geometries


