

T. Nakano, N. Asakura, H. Takenaga, H. Kubo, Y. Miura, S. Konoshima, K. Masaki, S. Higashijima and the JT-60Team

Japan Atomic Energy Research Institute, Ibaraki, Japan. 20th IAEA Fusion Energy Conference Vilamoura, Portugal, 1-6 November 2004

Background

Long pulse, steady-state operation

with R_{recycling} ~

Pellet

Introduction

Gas-puff

Particle control; For a constant density Fueled = Pumped Short pulse: **Divertor-pumping** Wall-pumping Long pulse: **Divertor-pumping** (Co-deposition?) Particle control

at wall saturated

Outline

No "carbon bloom"

Energy Input: 350 MJDiv. surface temperature: ~ 1300 K

Identification of Wall Saturation

Saturation Area, Wider than Divertor plates

The only difference : first-wall-temperature ⇒ Suggests particle release from first wall / Baffle plates

Source of particles, Baffle Plates

 D_{α} Brightness

	T _{wall} = 420 K	T _{wall} = 520 K
Divertor	similar	
First wall	>	
Baffle	<	

Density Controllability by Active Divertor-Pumping at Wall Saturation

Density controllability of divertor-pumping 3 n_e (x 10 ¹⁹ m⁻³) 2 Penning gage \mathbb{S} Wall saturation 0.12 Pressure (Pa) Pumping 80.0 With Gas-puff GAP 9.5 cm 4.5 cm 0.04 ΔP_0 lo gas-puf ~ 0 0.00 30 5 10 15 20 25 Δn_e Time (sec) Suggests; Large GAP \square Increase of P₀ \square Increase of n_a

can avoid MARFE at the end of long pulse discharges

Summary

- Modification for Long Pulse Operation, 15 sec => 65 sec
- ELMy H-mode plasma NB 10 sec => 30 sec
 - (~30 s ,~ 12 MW, 350 MJ, No "carbon bloom")
- Wall saturation was identified

(Minor role of co-deposition)

Divertor plates

Wall/baffle plates important particle source at R_{recy} > 1

- No sudden changes of plasma (Z_{eff} , H_{89PL})
- Undesirable increase of plasma density
 Confinement Degradation, MARFE
- Higher divertor-pumping efficiency (x 2 3)

required to avoid MARFE