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6.1. INTRODUCTION 
This project has had essentially two main lines of 
research:  

•   Studies on lower-hybrid (LH) current drive 
(CD)  

•   Development   of   kinetic   codes   to solve the 
Fokker-Planck (FP) equation.   

 
6.2. STUDIES ON LHCD 
6.2.1. Introduction 
Within this line of research, the following main 
activities were carried out in 2000: 
- Development of a fully 3-D (toroidicity plus 

ripple) tokamak ray-tracing code for LH wave 
propagation; 

- Study of diffraction effects on LH wave 
propagation. 

 
6.2.2. Fully 3-D tokamak equilibrium code 
The effects of toroidal and magnetic ripple on the 
propagation of LH waves for tokamaks with weak 
toroidicity (e.g., TRIAM-1M) have been addressed, 
where a large aspect ratio approximation for the 
toroidal magnetic equilibrium with ripple 
perturbations based on Shafranov geometry, and 
consistent up to the first order in ripple and toroidal 
perturbations, was used.  To extend this to tokamaks 
with high toroidicity, analytical and numerical studies 
of a more general non-axisymetric toroidal magnetic 
equilibrium with magnetic ripple, based on Hamada 
flux coordinates, have been started. 

Hamada coordinates form a particular magnetic-
flux coordinate system useful for non-axisymetric 
MHD calculations because they provide important 
simplifications in several contexts. In particular, each 
contravariant field component becomes a flux label 
even when there is no toroidal symmetry, and the 
current density and magnetic field lines are straight, 
whereas the Jacobian of the coordinate transformation 
equals one. This simplifies the analytical equilibrium 
formulation, although the non-axisymetric equivalent 
of the Grad-Shafranov equation will still be too 

complex. This is a nontrivial computational problem 
and only approximate iteratively numerically 
solutions can be found. However, by coupling these 
solutions to a LH ray-tracing code, the effects of 
magnetic ripple on the propagation of LH waves can 
be numerically determined for arbitrary toroidal 
geometries. This enables one to assess if magnetic 
ripple is sufficient to explain the LH spectral gap 
problem on several tokamaks, and in future will be 
used for comparisons with the theoretical analysis on 
LH wave propagation in toroidal plasmas with 
magnetic ripple. This is an extension of the work 
already done in cylindrical geometry. 
 
6.2.3. Diffraction effects on LHCD 
As for the analysis of diffraction effects on the 
propagation of LH waves, the problem of the 
calculation of the field intensity near caustics in the 
beam-tracing formalism has started to be addressed, 
but has not yet been solved. In addition, a more 
realistic axisymmetric magnetic equilibrium for 
diffraction and ray-tracing calculations has been 
developed (including elipticity and triangularity, 
besides the Shafranov shift), which leads to a 
method of solution for the Grad-Shafranov equation 
that is somewhat different from the standard one. 
 
6.3. KINETIC CODES TO SOLVE THE 
FOKKER-PLANCK EQUATION 
6.3.1. Introduction 
Within this line of research, the main activities 
carried out in 2000 regarded the improvement of 
kinetic codes for RF heating and current drive 
(H&CD) using both: 
- Finite differences;  
- Transition probabilities. 
 
6.3.2. Finite-difference codes for FP equations 
For a wide class of problems (describing the 
evolution of systems far from equilibrium), it is 
possible to reduce its detailed and often cumbersome 
description down to a much more manageable 

 55 



formulation, in which FP equations play a 
fundamental role. However, excluding a few 
particular situations, the solutions to such FP 
equations are not available in an analytically closed 
form, being numerical and approximate solutions the 
only resource when proper modelling is required. 
Therefore, the ability to efficiently provide accurate 
and stable numerical solutions to general FP 
equations, being them linear or not, establishes itself 
as a key factor in several areas of knowledge, ranging 
from Physics and Engineering to Economics and 
Social sciences. Even restricting the scope of 
applications to plasma physics, FP equations are 
fundamental when modelling Coulombian collisional 
transport, being it applied to astrophysical or 
thermonuclear (either magnetically or inercially 
confined) plasmas, and general wave-plasma 
interactions, resulting either in wave damping and 
energy absorption or in wave scattering, just to name a 
few examples. 

Since the numerical solution of FP equations is, in 
most applications, only a part of a more complex 
modelling scheme, the major goal of any solving 
method is to reduce as far as possible the cost in 
computing effort, without compromising, in the 
process, accuracy or stability. As the computational 
cost relates directly to the overall size of the mesh 
used to obtain a discrete version of the FP equation in 
question, one obvious way to reduce such cost is to 
employ non-uniform meshes, distributing the mesh 
points location according to the real needs of the 
problem being addressed. The guiding for this 
rearrangement should be established by minimising 
the errors introduced when turning a continuous FP 
equation into a series of discrete relations, increasing 
the accuracy for a given number of mesh points or, 
conversely, reducing the mesh size whilst maintaining 
the accuracy level.  

Within the most widespread approaches to 
numerically solve FP equations, some finite-
difference schemes may be singled out, which are 
intrinsically particle conserving and able to preserve 
the non-negative character of their solutions, as well 
as exact representations of equilibrium state. When 
dealing with non-linear problems, this type of scheme 
may be extended to non-uniform grids, not only by 
means of proper weighting coefficients, but also by 
redefining the concept of quasi-equilibrium solutions. 
Indeed, this is the key factor in order to maintain a 
rather general approach when solving FP equations, 
without resorting to particular properties of certain FP 

operators as, for instance, their ability to be rewritten 
in certain convenient form. 

The above considerations were successfully 
applied to the solution of two representative non-
linear problems in plasma physics, that is, the 
Coulomb scattering of a like-charged particle 
population and the Compton scattering of photons, in 
frequency space, due to the interaction with a 
electronic population in thermal equilibrium. The 
weakly non-linear nature of the first is related with 
the integral form of the friction and diffusion 
coefficients, which in turn makes the computational 
effort to scale roughly as N2.4, with N being the 
number of cells in the mesh. The second is strongly 
non-linear and represents a severe test to the 
proposed scheme. 

Since the Coulomb scattering problem is energy 
conservative by definition, one suitable process to 
evaluate the numerical solution quality is to compute 
the magnitude of energy dissipation effects, 
introduced by the discretization procedure. It may be 
shown that such energy dissipation effects are 
quantified by an integral functional involving the 
mesh size function ∆(x) and some of its derivatives, 
the minimisation of such functions being used as a 
guide in designing suitable non-uniform grids. In 
fact, even a rough design consisting in the 
juxtaposing of two uniform grids of different mesh 
sizes (a finer one for the low velocity zone and a 
larger one for the high velocity zone), is able to 
reduce energy dissipation when compared with 
uniform  grids   of   the  same  global  size  (Fig. 
6.1).  
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Fig. 6.1 - Relative energy dissipation. The circles stand for 
uniform grids, the inverted triangles for juxtaposed grids and the 
regular triangles to variational optimised grids. 
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However, as the mesh size in the high velocity zone is 
increased (decreasing the overall number of mesh 
points N), the results of such rough design gets worse 
and worse until they exceed the dissipation levels of 
uniform grids. To overcome this process, a more 
rigorous approach must be used when designing the 
high-velocity grid, based upon variational principles 
applied over the energy dissipation integral functional. 
This procedure gives rise to intrisincally non-uniform   
grids (Fig. 6.2), whose performance is clearly 
exhibited in Fig. 6.1. It is interesting to state that this 
approach is in everything similar to the variational 
calculus of Classical Mechanics, which has the 
Lagrangian equations of motions as one of its major 
outcomes. 
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Fig. 6.2 - Several variational optimised grids in the high-velocity 
domain, for N=65, 70, 75, 80, 85, 90 and 95. 
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Fig. 6.3 - Photon reduced distribution function, where the solid 
line stands for the analytical solution. The open circles and the 
inverted triangles depict the numerical solution achieved with a 
N=79 and a N=40 uniform grid respectively. The non-uniform 
grid with N=40 is shown with regular triangles. 
 

A good picture of how the finite difference scheme 
behaves under strong non-linear conditions may be set 
up by solving the Compton scattering problem, where 

the friction contribution depends on the square of the 
distribution function. Along with such non-linear 
character, this affecting mainly the quasi-equilibrium 
computation, the singular behaviour exhibited by the 
distribution function at low energies co-operates in 
worsening the accuracy as the number of cells in 
uniform grids is reduced (Figs. 6.3 and 6.4).  
However, a simple redistribution of the mesh sizes, 
while keeping fixed the number of cells, is sufficient 
to enhance by five times the accuracy in the 
computed steady-state solutions. When compared 
against previous results, which reported relative 
errors of the order 0.005 and lower for the same 
uniform grid, it may be suggested that the proposed 
scheme does not impose itself as a profitable 
alternative to already proposed ones. Nevertheless, it 
should be kept in mind that such previous schemes 
rely upon either the knowledge of exact quasi-
equilibrium solutions, or the possibility of rewriting 
the FP equation in a convenient form. Needless to 
say, neither one of such approaches are readily 
available for general non-linear problems, thus 
stressing the relevance of the developed scheme. 
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Fig. 6.4 - Relative error, with respect to the analytical solution, 
versus time. The dash-doted line stands for the N=79 uniform 
grid results, the dotted line for the N=40 uniform grid and the 
solid line for the N=40 non-uniform grid. 
 
6.3.3. Transition-probability formulation of the 
electron kinetics during RF H&CD  
A great variety of current scientific studies, from 
physics to biology to social sciences, involve the FP 
equation, an example being the problem that 
motivated the present work, the electron kinetics 
during RF H&CD of fusion plasmas. Other examples 
abound in various areas, and are as diverse as the 
modelling of muscle contraction, the study of neural 
networks or of interacting social groups, the 
interstitial atom clustering processes in diatomic 
materials when defects are produced in a solid and 
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more can be found for instance in the theory of non-
equilibrium thermodynamics, to name but a few 
illustrative cases. Such a broad application has, 
therefore, turned this equation into one for which 
developments at any level (theoretical or numerical) 
can potentially interest a vast audience. Of the various 
approaches used to solve the FP equation, path sums 
and Gaussian short-time propagators are known to 
offer a very simple and clear view of the kinetics 
involved and, moreover, to lead to a straightforward 
numerical implementation. As a consequence, they 
have been recently gaining some interest as a valuable 
alternative to Monte Carlo. 

In what regards the application of path sums and 
Gaussian short-time propagators to FP calculations for 
LH and electron-cyclotron (EC) CD studies, new 
advancements have been achieved. In particular, novel 
and improved boundary conditions, internal as well as 
external, were introduced, the former type to be used 
exclusively in two-dimensional (2-D) models whereas 
the latter (needed both at low and high velocities) to 
be used in 2-D and 1-D alike. Interestingly enough, 
the low- velocity external boundary condition has a 
much greater impact on Monte Carlo (than on 
propagator) calculations, as the tests with the well-
known 1-D model of LHCD have shown. This 
illustrates the advantages of path-sum schemes, where 
the electron distribution function may be effectively 
divided into a Maxwellian bulk and a perturbation 
(which essentially vanishes in the low-velocity region, 
and is thus virtually independent of the boundary 
conditions there). 
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Fig. 6.5 - Electron distribut
calculation with D=0.25 betwe
 

A 2-D code is in p
kinetics during LHCD, 
widely used models. 
equivalent finite-differen

moderate values of the wave induced diffusion 
coefficient (D~0.1) good results are achievable (Fig. 
6.5). Unfortunately, for higher values, owing to 
time-step restrictions and concomitant constraints on 
grid spacing, the handling of very large propagator 
matrices is required when solving 2-D FP equations, 
which leads to some difficulties. These are greater 
for LHCD than for ECCD, due to the strong wave- 
induced (electron) diffusion in the parallel direction 
in the former case, as opposed to perpendicular in 
the latter. 
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