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9.1. INTRODUCTION 
This chapter contains information about theoretical 
and simulation studies on: 
• Transport and MHD; 
• Non-inductive current drive; 
• Modelling of microwave reflectometry 

measurements. 
 
 

                                                          

9.2. STUDIES ON TRANSPORT AND MHD 
ACTIVITY 
9.2.1. Introduction 
The activity of this project has been focussed in the 
following research lines: 
• Triggering of neo-classical tearing modes by mode 

coupling 
• Sawtooth and impurity accumulation control in 

JET Radiative Mantle discharges 
• On the sawtooth precursors at the onset of 

neoclassical tearing modes 
• Numerical simulation of sawtooth stabilisation by 

ICRH driven fast particles for different JET 
scenarios 

• Influence of the position of the ICRH resonant 
layer over the internal kink mode stability 

• Nonlinear dynamics of magnetic islands 
• Physics of disruptions 

 
The work related with the first five research lines 

has been performed under the JET Implementing 
Agreement and is described in chapter 3.   
 
9.2.2. Nonlinear dynamics of magnetic islands1 
9.2.2.1.  Forced magnetic reconnection 
The attainment of high performance tokamak plasma 

operation and confinement depends strongly on the 
avoidance of locked modes. Owing to an imperfect 
alignment of the equilibrium toroidal magnetic field 
coils, a residual (error-field) static magnetic field 
with multiple poloidal (m) and toroidal (n) 
harmonics cannot be avoided. When there is a 
magnetic surface inside the plasma with an 
associated safety factor q=m/n (assumed to be 
tearing stable), the (m,n) component of the error-
field may force some reconnection at the q=m/n 
surface, leading to the growth and saturation of a 
magnetic island with a given width. For rotating 
plasmas, the forced reconnection of an otherwise 
stable mode (in the absence of error-fields) is also 
associated with a significant drop of the plasma 
toroidal rotation, and a further amplification of the 
mode amplitude . This motivated an extensive 
numerical analysis of the forced reconnection and 
amplification of stable ohmic tearing modes by 
external resonant magnetic fields in a large aspect 
ratio cylindrical geometry (a first approximation to 
the realistic toroidal geometry) . The numerical code 
solves the reduced MHD set of equations (9.1-9.4) 
for the perturbed magnetic flux (ψ(m,n)) and plasma 
vorticity  

(
)n,m(,z)n,m( vU ×∇−= ) 

together with the equilibrium flux (ψ(0,0)≡ψ0) and 
toroidal plasma rotation frequency (vz,(0,0)≡vz0) : 
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1 Work carried out in collaboration with Istituto di Fisica 
del Plasma. 
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The subscript 0 denotes equilibrium quantities and ρ, 
η and ν are the mass density, electrical resistivity and 
isotropic anomalous viscosity. The E0 is the 
equilibrium toroidal magnetic field and the  

0t,0z
2v =∇  

term is added to prevent the diffusion of the 
equilibrium profile in the absence of any magnetic 
perturbations. 

The amplification of the mode contemporary to the 
halving of the toroidal plasma rotation frequency at 
the mode’s rational surface was observed in the 
numerical simulations, in agreement with the 
experimental features of mode amplification (Figures 
9.1 and 9.2). Preliminary numerical results also 
indicate an agreement between the experimentally 
observed non localised damping of the toroidal 
rotation profile during the reconnection process 
(Figure 9.3) and a neoclassical viscous force, arising 

from the asymmetric plasma equilibria with an 
helical island, proportional to some power of the 
poloidal and toroidal magnetic field perturbations. 
This is shown in Figure 9.4, where the simulated 
time evolution of the toroidal plasma rotation 
frequency is shown (with the neoclassical viscous 
force added to equation (9.4) ). 
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Figure 9.1 – Forced reconnection and amplification (t=tamp) of a 
stable (2,1) mode, driven by a external ramped resonant helical 
current. At t=tamp, the toroidal plasma rotation frequency at the 
rational surface is halved . 

 

 
 

 

 

Figure  9.2  – Characteristic experimental results of the mode amplification in a JET discharge. The amplification
(left traces) occurs when the toroidal rotation is halved ( right figure) 
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The successful control of resistive tearing 
instabilities must take into consideration the 
inevitable occurrence of non-linear driven modes, 
arising from a three wave resonance interaction 
between tearing modes . In order to investigate the 
onset and amplification of such non linear driven 
modes, a multiple helicity numerical code (an 
extension of the reduced MHD code already 
available for a single helicity (Eqs. 9.1-9.4)) was 
used to analyse these modes in the framework of 
driven forced reconnection. The dynamics of the 
driven mode is in fact very similar in nature to a 
forced reconnection process. For typical toroidal 
plasma rotation profiles smoothly decreasing with 
the minor radius, the three modes almost satisfy 
automatically a three wave frequency matching 
condition, favouring the driven reconnection of a 
stable mode by the mode coupling interaction with 
two unstable modes. For low β plasmas, and 
excluding (1,1) modes, non linear mode coupling 
was shown to be relevant only for low central shear 
parabolic safety factor (q) profiles (Figure 9.5), 
involving a dominant unstable (2,1) mode, a satellite 
(lower width) unstable (3,2) and a driven (5,3) mode.  

 
 
Figure 9.3 - Experimental time evolution of the toroidal angular 
velocity evidencing a non diffusive behaviour and the presence of 
non-localised torques 

 
 

 
 

Figure 9.4 – Neoclassical viscous force effect on the time 
evolution of the toroidal rotation frequency profile (the mode 
amplification occurs at t=tamp) [3] 

 
 
In addition from the numerical simulations, 

important scaling laws for the dependence of the 
error-field amplification threshold on key plasma 
parameters (anomalous plasma viscosity-ν, rotation 
frequency-V0,xs) and operational discharge parameters 
such as the toroidal magnetic field (Bz) where 
inferred, being summarised below . Although a large 
toroidal rotation frequency is beneficial since it 
increases the error-field amplification threshold, for 
larger operating toroidal magnetic fields, there is a 
lower limit to maximum tolerable error field since the 
relative threshold bthresh/Bz scales as 

 (I725.0
zzthresh BB/b −∝ thresh(A) xs,0V∝ , 

,∝ ). 43.0ν∝ 275.0
zB

These results from the fact that tearing instability 
at low β for the (3,2) only arises for such safety 
factor profiles. At high β, when the neo-classical 
bootstrap current effects play a dominant role, such a 
constraint on the q-profile vanishes, and non-linear 
driven mode excitation should be observed more 
frequently, as long as the two driving modes, for this 
specific case the (2,1) and (3,2) modes, coexist in the 
plasma (as is well know, the triggering of (2,1) 
modes often leads to the cancellation of the (3,2) 
mode. 

 
Figure 9.5 – Typical q-profiles unstable to both (2,1) and (3,2) 
modes. The steady state saturated island widths of the driven 
(5,3) mode as well as the driving (2,1) and (3,2) modes are also 
shown (the dashed lines identify the rational surface location of 
each mode whereas the full thick segments provide an indication 
of the islands’ width) 9.2.2.2. Three wave resonance interaction 
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9.2.2.3. Alternative tearing mode stabilisation 
methods 
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(i)  Stabilisation by strongly sheared plasma rotation 
profiles 
Analytical  and numerical  work suggest that the 
plasma rotation dependence on the minor radius may 
affect significantly the stability of tearing modes. It 
has been conjectured that for strongly sheared profiles 
around the rational surface, where the plasma rotation 
frequency is zero at the rational surface and positive 
on both sides, complete mode suppression can be 
obtained since a  is obtained (0<∆′ ∆′∝dt/dW  
where W is the island width). The effect of toroidal 
plasma rotation profiles with such shear on the 
stability of the modes was therefore analysed 
numerically by appropriately extending the numerical 
code to include such an effect. An equilibrium 
toroidal rotation frequency profile as that given by 
equation (9.5) was used 

 
Figure 9.6 – Effect of strong sheared toroidal rotation (Eq.(1)) 
on the stability of tearing modes 
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where a% is the change in percentage of the rotation 
frequency at the rational surface (V0,xs) and δh is the 
half width of the depression in the modified rotation 
frequency profile. A parabolic q-profile with q0=1, 
qa=3.5 ( ) and central toroidal rotation 
frequency V

8=∆′

dep

′

0=26 kHz were used. The numerical 
simulations, done with , show that the 
shear effects are stabilizing provided the width of the 
depression in the rotation frequency profile 
( δ ) is smaller than the island width (Figures 
9.6 and 9.7). Additional simulations have shown that 
for a larger ∆  or a smaller central toroidal rotation 
frequency, the stabilization effect becomes marginal. 

%95a % =
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Figure 9.7 – Toroidal rotation frequency profile of the most 
stabilizing case of figure 9.7 

 
such conclusions are drawn from a simplified model 
for the time evolution of the island width and 
rotation frequency, based, respectively, on the 
competition between stabilising and destabilising 
contributions to the ∆′  parameter, and on the 
competition between the braking electromagnetic 
torques induced by the external field and the 
restitution (accelerating) viscous torques originating 
from the plasma outside the island. 

 
(ii)  Stabilisation by static external resonant fields in 
fast rotating plasmas An analysis of the time evolution of the 

perturbed magnetic field and mode frequency based 
on the reduced set of MHD equations Eqs. 1-4 is 
expected to provide a deeper insight on the nature of 
the interaction. In fact, quite surprisingly, for fast 
rotating plasmas, a static current is expected to have 
a stabilising effect, provided the plasma is kept 
rotating . This is shown in Figures 9.8 and 9.9, 
where, once the mode is saturated with a finite 
amplitude, a static current is switched on (t=tIE) and 
a toroidal angular momentum source (neutral beam 

The interaction of static external magnetic fields 
resonant with a particular rotating tearing mode inside 
the plasma is usually thought to be destabilising when 
the mode’s rotation, under the influence of the 
external field, is brought to zero . This is based on the 
assertion that, in steady state, the phase difference 
between the mode and the external field (∆φE) is such 
that  ,  implying  instability.  However, 0)cos( E >φ∆
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injection- NBI- for example) is switched on at t=tNBI. 
On average, the mode amplitude is decreasing, the 
same happening to the toroidal plasma rotation 
frequency at the rational surface (Figure 9.8). The 
decrease in the mode’s amplitude (approximately by 
70%) is connected to a stabilising phase difference 
(Figure 9.9). If a momentum source is not supplied to 
the toroidal rotation, following a continuous decrease 
of the plasma rotation, the stabilising phase is 
ultimately lost (φs becomes positive) and the mode is 
destabilised (increasing its amplitude significantly). 
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Figure 9.8 – Time evolution of reconnected flux and toroidal 
rotation frequency at the rational surface. The NBI prevents the 
V0,xs fall and allows for the consequent stabilization of the mode . 
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Figure  9.9  – Time evolution of the mode’s phase at the rational 
surface. A stabilizing phase is maintained 

 
9.2.3. Physics of  disruptions 
Despite disruptions are known since the early days of 
nuclear fusion research, the cause of the energy 

quench2 is still unclear. The available models can 
only address part of the event and they are static, 
lacking the capability of predicting the time 
evolution of the energy quench due to the 
complexity of this plasma event. 
In recent high resolution measurements of the energy 
quench in RTP (FOM-Institut ‘Rijnhuizen’) a series 
of observed phenomena raise the question whether 
convection is playing a significant role in the fast 
transport of energy that characterises this event. Two 
of these observations were : (i) the erosion of the Te 
profile in the neighbourhood of the m/n=2/1 mode 
O-point on the outboard that triggers the well known 
fast m/n=1/1 Te erosion (Figure 9.10); (ii) the small 
decrease of the electron density in the centre of the 
plasma followed by a large increase (~50%) in the 
m/n = 2/1 island, also during the same period. 
 

 
 

Figure 9.10 - Illustration of a major disruption. (a) Time 
evolution, with 2 micro seconds time resolution, of the radial 
temperature profile measured by the ECE radiometer. The 
position of the channels is indicated at the right. The horizontal 
dashed lines indicate the position of the q=2 surface. The dotted 
line indicates the position of the limiter. Arrows A and B 
indicate the m/n=2/1, O point erosion. (b) Time derivative of the 
poloidal magnetic field at the equatorial plane in the low field 
side and displaced a toroidal angle of 150º from the ECE 
radiometer. 
 

Two set of experiments have been planned and 
proposed for JET and ASDEX Upgrade in order to 
continue this study in larger tokamaks. 

                                                           
2 The event where the energy confinement of the plasma is 
suddenly completely lost. 
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In the frame of the study of amelioration of 
disruptions, an experiment is also planned to assess 
the effect of the ASDEX ECRH system on the  
recovery of the plasma current  (when switched on at 
the onset of the current quench that follows the energy 
quench), as observed at RTP.         
 
 
9.3. STUDIES ON NON-INDUCTIVE CURRENT 
DRIVE 
9.3.1. Introduction 
This project has had the usual lines of research: 
• Studies on lower-hybrid (LH) current drive (CD); 
• Development of kinetic codes to solve the Fokker-

Planck (FP) equation. 
where the following main activities were carried out: 
� Continuation of the writing of a fully 3-D (toroidal 

plus ripple effects) ray-tracing code; 
� Application of beam-tracing techniques for LH 

wave propagation in tokamaks; 
� Improvement of kinetic codes, with interesting 

developments obtained with path-sum codes. 
 
9.3.2. Beam tracing for LH wave propagation in 
tokamaks 
When modelling LHCD in tokamaks, the interaction 
between the propagating wave field and the electronic 
distribution function is usually described with the aid 
of two coefficients: the damping coefficient, which 
states how much power is absorbed from the wave 
field by the electronic population characterised by a 
given distribution function, and the quasilinear 
diffusion coefficient, controlling the shape of the 
distribution function that evolves under the wave-field 
influence. For a given field mode, the damping 
coefficient is essentially related with the first 
derivative of the distribution function at that mode 
phase velocity. On the other hand, the quasilinear 
diffusion coefficient value for a given electron 
velocity vector is proportional to the weighted sum of 
the squared field amplitude for all modes matching the 
resonance condition, being the weighting factors 
given by the squared cosine of the angle between the 
phase-velocity vector and the magnetic field. 
Therefore, the computation over each flux surface of 
the squared field-amplitude spectral distribution, in 
terms of the refraction index component parallel to the 
magnetic field, N||, establishes itself as a key step in 
any LHCD modelling procedure. 

For the LH range of frequencies, the standard 
method to obtain such spectral distributions, and from 

them the quasilinear diffusion coefficient, is deeply 
reliant on the geometric optics (GO) approximation 
and ray-tracing techniques. However, the 
acknowledgment of several limitations intrinsic to 
conventional GO, ranging from poor numerical 
efficiency to its failure to properly account for some 
wave effects like diffraction, have pushed the need 
for more detailed descriptions of the LH wave-field 
propagation to be developed. Due to the smallness of 
the LH wavelength, full-wave calculations in 
toroidal geometry present still a daunting challenge 
and, therefore, an intermediate asymptotic 
approximation has been sought in the form of a 
paraxial WKB (pWKB) approximation. While 
retaining a GO description along the group-velocity 
direction, the pWKB approximation effectively 
accounts for the wave properties in the direction 
transverse to it, enabling one to assess how 
diffraction effects may contribute to the broadening 
of the launched LH spectra. 

Unlike GO, where the squared field amplitude 
for each mode is obtained without the call for 
explicit field construction, the pWKB approach 
provides the explicit electrostatic potential Φ(u,v,τ) 
in the so-called reference-ray frame {u,v,τ}, built 
around the reference-ray trajectory (u = v = 0), 
together with rules granting coordinate conversion 
between the reference-ray frame and the laboratory 
(or tokamak) frame {r,θ,φ} (with r being the radial 
distance to the magnetic axis, and θ  and φ the 
poloidal and toroidal angles, respectively). Once the 
electrostatic potential has been computed, by 
integrating in τ a system of 17 non-linearly coupled 
differential equations, it must be evaluated over a set 
of flux surfaces and then Fourier analysed in the 
angular variables. The momentum variables, 
canonically conjugated to the angular variables 
considered, and in which the spectral distribution is 
expressed for the time being, must be related to the 
magnetic-field vector in every point of each flux 
surface, allowing one to compute the value of N|| 
associated with each field mode. Since magnetic-
field lines do not cross flux surfaces, there is no need 
to compute spectral distributions along a radial 
momentum variable, and therefore the Fourier-
analysis effort is reduced to two-dimensional fast 
Fourier transforms (FFT), instead of a full three-
dimensional analysis, which would be extremely 
demanding in computational resources. 

The procedure outlined above presents three 
main problems, which were successfully addressed 



and solved. The first one, which is related to the 
transformation rules between the reference-ray and the 
tokamak coordinate sets, reflects the fact that, 
although the transformation from {u,v,τ} to {r,θ,φ} is 
a one-to-one correspondence, the reverse is not. In 
order to assign a single point, in the reference-ray 
frame, to every point in the tokamak frame, the 
concept of constant-τ surfaces had to be developed. 
These constant-τ surfaces are indeed mappings, at 
different values of the integration parameter τ, of the 
surface over which the initial distribution of the 
electrostatic potential Φ0(u,v) = Φ(u,v,τ = 0) is given, 
and the evolution of its geometry has been modelled 
with the aid of 6 additional differential equations, 
together with proper initial conditions. The second 
problem has to do with the singular behaviour, near 
the origin r = 0, of the tokamak coordinate set. The 
standard way to handle this issue involves the change 
to a coordinate set with non-vanishing Jacobian, like 
the set {R,z,φ}, where R is the distance to the tokamak 
axis, z is the distance to the equatorial plane and φ 
remains the toroidal angle. However, such coordinate 
set does not allow a simple description for the τ = 0 
surface, which must be expressed as a linear relation 
of the chosen coordinates. The solution was found by 
introducing a new curvilinear coordinate set, based on 
elliptic cylindrical coordinates, which is able to 
suppress the ill behaviour of singularities whilst still 
allowing for simple descriptions of initial conditions. 
At last, the angular variables used to describe the field 
distribution over each flux surface had also to be 
redefined in order to turn N|| into a flux function, 
which is far from being a straightforward task for 
toroidal magnetic equilibria. 

 
 
Figure 9.11 – Squared field-amplitude E*E(ρ/a, N|| ) as a 
function of both the refraction index component parallel to the 
magnetic field and the flux-surface radius ρ, normalized to the 
tokamak minor radius a, for a launched gaussian beam centred 
at N|| = 2. 

 
there is no recourse other than to resort to some kind 
of numerical method, as analytical solutions do not 
abound, whereas finding solutions for specific 
models as complex as these might be a dead-end 
road. The most widespread numerical approach 
consists in directly solving the FP equation by means 
of finite differences. Still, alternative approaches 
such as the use of Monte Carlo and propagators have 
found increased acceptance, as they are known to 
offer a very simple and clear picture of the kinetics 
involved and lead, moreover, to a straightforward 
numerical implementation. Of these, the use of 
Gaussian short-time propagators to numerically 
evaluate solutions to FP equations as path sums has 
been gaining some interest as a valuable alternative 
to Monte Carlo, over which they have advantages 
both in terms of accuracy and computational 
efficiency. However, path-sum schemes (just as, for 
that matter, Monte Carlo) still face some quite 
challenging problems when compared to the finite-
difference approach. This is especially true 
concerning the computational efficiency of 2-D 
calculations, owing to time-step restrictions and 
concomitant constraints on grid spacing (which 
implies the handling of very large propagator 
matrices). 

After having successfully solved the above 
mentioned problems, the squared field-amplitude 
spectral distribution in N|| as a function of the flux-
surface radius ρ was computed (as depicetd in Figure 
9.11 for TRIAM-1M), making possible further 
developments leading to the calculation of power 
deposition profiles, which are essential for LHCD 
modelling. 

 
9.3.3. Path-sum codes for FP equations 
The FP equation, which is one of the mainstays in 
kinetic theory, is fundamental in CD modelling of 
fusion plasmas using rf power, such as electron-
cyclotron (EC) and LH waves. For the solution of the 
more realistic two-dimensional (2-D) models that 
have  been  developed  to  study  LHCD  and  ECCD,  

In relation to the application of propagators to the 
solution of FP models for LHCD and ECCD studies 
undertaken, the appropriateness of the boundary 
conditions, whose importance is well known for this 
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type of problems, has been further improved, in 
particular that pertaining to the external boundary and 
some of the internal ones as well. To this end some 
approximations were proposed and tested to give good 
results for situations where finding the exact 
analytical form of the bounded propagator (at least 
with the known techniques used for propagators) 
would be excessively daunting, if not impossible to 
tackle. Moreover, new and improved methods were 
developed with a view to a more efficient computation 
of the non-negligible elements of the 2D propagator 
matrix by reducing the number of mistrials. 

The propagator implementation of the 2D model 
of LHCD was taken a step forward to higher, yet 
moderate, values of the rf diffusion coefficient than 
before, extending up to , a standard value in 
these studies. To meet this goal, a special technique 
had to be created with which to allocate more 
efficiently the computer resources to the two main 
regions: the resonant and the non-resonant ones. As 
the propagator formulation previously developed 
reveals, the former region places more stringent 
conditions on both the time step and the cell width 
than the latter. Accordingly, with this technique the 
propagator matrix for the resonant region is first 
computed with its appropriate time step and grid, and 
then used to determine the propagator matrix for a 
larger time step. Afterwards the resulting propagator 
is converted to a larger cell grid where the propagator 
matrix for the non-resonant region is also determined 
using the larger time step. These two large parameters 
(time step and cell width) are selected to be more 
suitable for the conditions reigning in the less severe 
non-resonant region. At this point the problem is 
totally converted to the new large time step and grid, 
where the evolution of the entire system is followed 
from then on. The results of the numerical 
implementation are not only better than previously 
obtained with the propagator approach, but also in a 
very reasonably good agreement with the 
corresponding finite-difference solutions. Moreover, 
and as a spin-off, they are achieved using much 
shorter CPU times. Unfortunately for higher values of 

 the restrictions imposed by the time-step and 
cell-width criteria point towards the need to handle 
excessively and increasingly large propagator matrices 
such that from the computational stance it rapidly 
becomes an unacceptable burden to bear. Still, this is 
a more acute problem for LH than EC waves given the 

strong parallel diffusion induced by the former 
compared to perpendicular diffusion of the latter. 

1≤rfD

rfD

For the first time the limiting situation in ECCD 
where an extremely high power rf wave such that 

∞→rfD

D

 is used was treated in this approach. It 
should be remarked that solving such a problem 
represents an important breakthrough for path sums 
in modeling rf current drive as, until this was 
achieved, it seemed out of reach of propagators – 
even though it was already solved by finite 
differences, with recourse to the same principles 
used now in propagators – given that, not only is 
such a  not moderate by any standards (a 
limitation the previously reported studies appeared to 
impose), but it is not even finite. The numerical 
implementation demonstrated that propagators are 
capable of achieving good results also in this severe 
situation (Figure 9.12), showing that this approach is 
indeed appropriate at least for low-to-moderate and 
extremely high rf powers. 

rf
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Figure 9.12 - Contour plot of the steady-state electron 
distribution function fst(v| |,v⊥,t → ∞) for ECCD when the rf 
quasilinear diffusion coefficient obeys Drf → ∞. The contour 
levels are for constant values of the quantitity {–2ln[(2π)3/2 
fst(v| |,v⊥,t → ∞)]}1/2, which would yield equally spaced circles 
for a Maxwellian distribution. 
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9.4. MODELLING OF REFLECTOMETRY 
EXPERIMENTS 
9.4.1. Introduction 
The following main activities have been made in 
20013: 
� Development of 2D wave propagation models to 

characterize the wave scattering at micro and 
macro turbulence; 

� Development of a 2D code for broadband 
reflectometry that replicates the main 
characteristics of the reflectometry diagnostic on 
ASDEX Upgrade (detection, sweeping, data 
analysis); 
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� Simulation of profile changes occurring during 
type I ELMs and when a rotating magnetic island 
is present. 

�  Identification of the modes signatures on the 
broadband signals 

 
9.4.2. Modelling of non-coherent density 
fluctuations 
9.4.2.1. Model of density fluctuations 
Turbulent phenomena in tokamaks induce density 
fluctuations that are superimposed to the average 
density profile. In the 2D case, the density profile can 
be then written as follows: 

),(),(),( yxnyxnyxn eee δ+><=    (9.6) 

where x and y are respectively radial and poloidal 
coordinates. Turbulence measurements performed in 
Tore Supra have shown that the density fluctuations 
present k-spectrum components until 10 - 20 cm-1. 
Then we assume that the density fluctuations can be 
decomposed as Fourier series: 

                            (9.7) 
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where kx and ky represent  the radial and poloidal 
components of the spectrum and ϕ(kx,ky) is a random 
phase. The amplitude spectrum S(kx,ky) of density 
fluctuations is thus defined by the coefficients 
a(kx,ky). Depending on the random choice of the phase 
terms ϕ(kx,ky), we can note that an infinity of 
solutions for the density fluctuations gives the same 
spectrum. Consequently, the study of the effect of a 

given fluctuation spectrum should require a large 
number of cases to get a statistical response. A 
displacement of the density fluctuations with respect 
to time (for instance to simulate the poloidal rotation 
of the turbulence) can also be simulated by the code. 
Just note that the spectrum changes in the presence 
of a velocity shear. In the results depicted in the 
following, an experimental-like spectrum  (i.e. 
plateau for k < 4 cm-1 and k-3 decreasing for 4 cm-1 < 
k < 15 cm-1) has been input in our code. 
 
9.4.2.2. Broadband frequency reflectometry 
simulation 
Simulation of broadband reflectometry experiments 
where frequency sweeping time ≥ 20 µs imposes a 
large number of iterations resulting in long 
computing times for 2D codes. From 1D simulations 
we show in the case of a frozen density profile that a 
shorter sweeping time can be used without any 
significant effect on the phase of the reflected signal. 
This is illustrated in Figure 9.13 for two different 
sweeping times (20 µs and 50 ns) in the presence of 
a high  level  of  turbulence (10% normalized to the  
maximum  density). The  amplitude of  thereflected 
signal presents large variations for the short 
sweeping time (50 ns) whereas it is almost 
unperturbed for a sweeping time of 20 µs. However, 
we can notice that the group delay profile 
determined from a sliding normalised FFT technique 
remains surprisingly identical whatever the sweeping 
time. Consequently, we use in the following 2D 
simulations a sweeping time of 50 ns assuming that 
it remains relevant to study the fluctuation effects on 
the time of flight (but not on the amplitude of 
reflected signal).  

Figure 9.14 presents contour plots of the electric 
field (at a given time during the frequency sweeping) 
without density fluctuations and in the presence of 
density fluctuations with a level of 10% are 
compared, showing the wave scattering induced by 
such fluctuations. The effect on the time of flight is 
exemplified in Figure 9.15, where a comparative 
study is made for density fluctuations of 3%, 5% and 
10%. In each case, 5 random choices of phase values 
needed to define the density fluctuations have been 
considered. The perturbations remain small for 3 % 
(0.1 - 0.2 ns) and will not affect significantly the 
profile reconstruction. For a level of 10%, the time 
of flight perturbations can be extremely strong (until 
1 ns) which will prevent the correct density profile 
reconstruction. 

                                                           
3 In collaboration with the University of Nancy, France. 



 
 

Figure 9.13 – Low frequency filtered signals (top) from 1D code and corresponding sliding FFT curves (bottom) in the presence of 
non-coherent density fluctuations (level of 10%) 

 
 

A reduction of the reflectometry signal perturbations 
is generally noticed during improved confinement 
regimes (H mode, ITB). Two hypotheses are 
suggested to explain this reduction, namely a local 
steepening of the density profile and a modification   
of   the  density  fluctuation  spectrum. The effect of 
the steepening of the density profile. Using the same 

density fluctuations of 10 %, we made a simulation 
for two types of density profile (Figure 9.16). As 
expected the time of flight profile shows a reduction 
of the perturbations for the steeper profile, thus 
confirming the influence of the density gradient on 
the signal perturbations (Figure 9.17). 

 

 
 

-

 

 

Figure 9.14 – Electric filed contour plot from 2D code without density fluctuation (on left) and in the presence of non
coherent density fluctuations with level of 10% (on right). 
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Figure 9.15 - Perturbations on the time of flight in the presence of non-coherent density fluctuations (respectively for 3,5 and 10 %)

 

 
Figure 9.16 – Linear and peaked density profiles with 
superposition of the same density fluctuations (the two vertical 
lines represent the probed region) 

 
 
9.4.2.3. Fixed frequency reflectometry simulation 
In this section the effect of poloidal rotation of the 
turbulence in fixed-frequency reflectometry is studied. 
Simulations in the 2D case are limited by very 
demanding computing times. As an example, for the 
numerical box used in these simulations (30 and 20 
cm in radial and poloidal directions), the study of 
wave propagation during 500 ns requires 20 hours of 
computing time (on PC computer - AMD Athlon 850  
 

 
MHz – RAM 256 Mb). Thus for reasonable 
computing times, the time range for physical 
phenomena study remains generally too small to see 
significant phenomena occurring in fusion plasmas. 
For instance, measurements of poloidal rotation of 
the turbulence suggest velocities in the order of few 
km/s. Observation times at least in µs range should 
be then considered to study the effect of poloidal 
rotation. Preliminary results suggest that the rotation 
velocity can be increased without qualitative change 
(that must be confirmed with additional simulations). 
Consequently, in order to reduce the computing time 
the velocity of turbulence rotation has been largely 
increased in the following simulation. Simulating  
the poloidal rotation of the turbulence (5% of 
amplitude with velocity shear in radial direction), we 
analyse the reflectometer response when the rotation 
velocity increases as occurs during the formation of 
transport barriers (Figure 9.18 on left). As seen in 
experiments, the spectral analyse of the reflected 
signal highlights the high frequency shift due to the 
velocity increasing (Figure 9.17 on right). More 
simulations should be done in the future to interpret 
Doppler reflectometry experiments. 

 

             
 

Figure 9.17 - Reduction of time of flight perturbations for steeper profile 
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Figure 9.18 - Effect of poloidal rotation of the turbulence on fixed-frequency reflectometry measurements (Note that unrealistic velocities 

have been considered to reduce the computing time) 
 
 
9.4.3. 2D FDTD Maxwell code-application to the 
study of localized quasi-coherent modes in density  
measurements using o-mode broadband 
reflectometry  
9.4.3.1. Description 
In order  to  interpret correctly the variations of the 
phase derivative  we have developed a 2D finite-
difference time-domain (FDTD) Maxwell code suited 
to describe profile measurements4.  The simulations 
permit to obtain the signatures of localized plasma 
modes and to test some assumptions on the origin of 
the density profile perturbations observed in the 
reflectometry experiments on ASDEX Upgrade. Two 
cases were analyzed: (i) in the first simulation we  
consider  a simple model which shows that density 
deformations can conduct to destructive interference;  
(ii) in the second set of simulations the effects of 
Gaussian perturbations, both in the phase derivatives 
and the the reconstructed density  profiles,  are 
studied.  
 
9.4.3.2. Simulations 
In all of the following simulations, the plasma  was 
probed in the Ka microwave band, covering a density 
range [1-2]×1019 m-3, by linearly sweeping the 
frequency of the probing signal from 30 GHz up to 40 
GHz. We consider a single horn antenna for emission 
and reception and as used in the reflectometer 
diagnostic on ASDEX Upgrade. The reflectometric 
signal was recovered with an homodyne detection 
scheme. 

 
 
 
 
                                                           
4 Annual Report 2000. 

 
9.4.3.3. Double density gradient interference 
In the first case, the antenna beam illuminates a 
plasma with  two regions (1 and 2) having  different 
linear density gradients (Figure 9.19). This simulates 
in a simple way  situations where plasma 
perturbations (e.g. due to a magnetic mode) originate 
local flattening of the profile. The gap between the 
cut-off layers is calculated to cause  a destructive 
interference for a given frequency. A 1D model 
based on  Airy functions can be used to give an order 
of magnitude of the spatial variation involved: the 
electric fields corresponding  to the two simulated 
gradients, for a frequency f = 32.5 GHz,  appearing 
in (Figure 9.20), are in  opposition at  x = 17.15 
λ40GHz  in a  gap of  ~ between cut-off layers.  The  
detected simulation signal, A(t) cos[ϕ(t)], presents a 
destructive interference around 32.5 GHz resulting in 
a decrease of amplitude (Figure 9.21).The signal 
does not drop to zero as the 1D model suggests since 
there are other 2D effects that also play a role.  
 

 
 

Figure 9.19 - Two density gradients chosen in order to create a 
destructive interference 
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Figure 9.20 - Field amplitudes annulling 16.6λ40 

 

 

 
Figure 9.21 – Signal showing destructive interference 32.5 GHz 

 
The associated  perturbation in the phase derivative 

can be  observed in Figure 9.22, where the doted lines 
show the theoretical phase derivatives for each half of 
the density profile. 
 
 

 
 

 
Figure 9.22 – Jump in ∂ ϕ/∂ f due to destructive interference 

 

9.4.3.4. Gaussian perturbations 
9.4.3.4.1. Fixed radial Gaussian 
A Gaussian perturbation,  
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is placed in front of the emission/reception antenna, 
having its center  (xf, yf) = (xc35,0)   aligned with the 
antenna axis, where xc35 is the cut-off position for f = 
35 GHz.  

For the chosen simulation parameters, the limit 
between feeble and strong amplitude, given by 
(2πL40GHz/λ40GHz)-2/3, is 3.3%. With an amplitude of af 

= -3%, the imposed perturbation is at this limit, 
reinforcing the response  while keeping non-linear 
effects low. The spatial extention of the perturbation, 
fixed at wx = wy = 3λ40GHz is wide enough to ensure a 
quasi-spatial regime (with negligible spectral 
effects). The resulting phase derivative appears in 
Figure 9.23. It can be noticed that the phase 
derivative deviates from the unperturbed case, 
having an higher value almost throughout the  
sweep. 
 

 
Figure 9.23 - ∂ ϕ/∂ f due to fixed radial Gaussian 

 
9.4.3.4.2. Poloidally moving Gaussian 
Taking the Gaussian perturbation used above we  
moved it poloidally along an iso-density line, (xc35, 
y(t)), where xc35 is the cut-off position for f = 35 
GHz. The perturbation starts moving synchronously 
with the frequency  sweep, passing in front of the 
antenna at mid-sweep. The effect of the traveling 
Gaussian results in a noticeable well-localized 
decrease in the signal amplitude (Figure 9.24). The 
influence of the moving  Gaussian in  the phase 
derivative (Figure 9.25) is observed  from ~ 33 GHz  
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Figure 9.24 – Reflectometric signal for a moving Gaussian 

 

 
Figure 9.25  - ∂ ϕ/∂ f for a moving Gaussian 

 
to ~ 37 GHz. The strong decrease in its value, around 
36 GHz, correlates well with the amplitude decrease 
observed in the signal. 
 
9.4.3.4.3. Fixed lateral Gaussian 
The same Gaussian perturbation used in the previous 
simulations was now fixed laterally to the antenna 
axis at (xc35, -2.48 λ40), the same position where the 
decrease of amplitude and phase occurs with the 
moving Gaussian. In the reflectometric signal (Figure 
9.26), a strong decrease in the amplitude of the signal 
occurs, extending widely across the sweep and 
reaching it minimum at 38 GHz. This decrease in 
amplitude corresponds to a moderate decrease in 
phase derivative, except around 38 GHz where a 
strong drop in phase derivative is observed (Figure 
9.27). 

 
 

 
 

 
 
 

 

 

 
Figure 9.26 – Reflectometric signal for lateral fixed Gaussian 
 

 
Figure 9. 27  - ∂ ϕ/∂ f for a lateral fixed Gaussian 

 
9.4.3.5. Profile reconstruction 
To reconstruct the density profiles, the initial part of 
the phase derivatives (under the first swept 
frequency) were calculated from the analytical 
expression for a linear density profile ∂ϕ/∂f = 8π(xM- 
xm)/c(f/fM)2.  

The complete phase derivative is then Abel 
inverted to obtain the distance d(f) of the reflecting 
layers. The density profiles for the simulations with 
Gaussian perturbations  are presented in Figures 
9.28, to 9.30. The doted lines correspond to the 
reconstructed unperturbed profiles. 

 
Figure 9.28 – Profile – radial Gaussian 
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Figure 9.29 – Profile – moving Gaussian 

 
 

 
 

 
Figure 9.30 – Profile – lateral Gaussian 

 
 
9.4.3.6. Improvements on the 2D FDTD  Maxwell 
code 
Together with the physical studies and simulations 
important work  on the 2D code  was done.  The code  
has been entirely rewritten and differs from the former 
by the use of dynamic allocation of memory. During 
its writing,  a general cleaning took place and some of  
the  procedures  were  optimized.   In  what  execution  
speed  is concerned, a dramatic  improvement was 
obtained. The increase in speed has allowed us to 
double  the number  of points per  wavelength, thus  
decreasing the phase error by a factor of 7.  

The improvements in the code  and the 
benchmarking performed lead also to the conclusion 
that the  performance could greatly improve with the 
implementation  of  unidirectional  signal injection  
conditions.  The implementation of  unidirectional 
injection  to the FDTD  Maxwell code based on the 
procedure used in the FDTD Wave Equation code 
has started and has been given high priority. 

During the benchmarking tests it was noticed 
that the absorbing boundary conditions used may 
have a significant  reflection coefficient which   may   
be  particularly   important   at   the   back  of   the 
emission/receiving waveguide  due to the closeness 
of  the boundary to the  emission  point.   The use  of  
a  Perfectly Matched Layer (PML)  to  close  the 
waveguide should obviate the border reflected 
component in the guide. 

An alternative way of  referencing the memory 
positions which resulted in a improvement of  in 
speed was tested. It was also  tested a new way of 
defining the waveguide and antenna which should 
offer an easier and more  flexible  way of  modeling  
metallic  structures (o-mode).  This proved also to be 
faster for the case tested. This two possible 
improvements are  independent and  should be  used 
simultaneously. They  are being incorporated in the 
main code. 
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