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Resonant heating of particles in a confining magnetic field has been examined by many
authors and is of importance in the heating of magnetically confined laboratory as well
as extraterrestrial plasmas[1–7]. Recently it has been shown [8] that, at sufficiently large
wave amplitude, wave heating well below the cyclotron frequency is possible. The simplest
problem possible is that of a particle gyrating in a constant magnetic field �B0 = B0ẑ acted
upon by an electrostatic plane wave propagating perpendicularly to �B0.

The Hamiltonian for this system is H = (�p − �A)2/2 + Φ(x, t) with the vector potential
�A = −B0yx̂. Take the units of time to be given by Ωc, the cyclotron frequency, let
the electrostatic wave be given by Φ = Φ0cos(kx − ωt), and set the velocity parallel to
�B0, vz = 0. Dimensionless parameters characterizing the heating problem are kρ, with
ρ = v/Ωc the cyclotron radius, k2Φ0 = k∆x, the nonlinearity parameter, giving the ratio
of particle displacement caused by the wave to wave length, and ω/Ωc. The equations
of motion become v̇x = vy + kΦ0sin(kx − ωt), vy = −x + x0, giving d2x/dt2 + x =
x0 + kΦ0sin(kx − ωt). First consider this equation for s ≡ k(x − x0) � 1. Letting
2T = kx0 − ωt and keeping only lowest order in s we have
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i.e., a Mathieu equation with unstable solutions for ω � 2/q with q integer, indicating
the existence of large amplitude solutions for these values of ω. This response is due to
resonance consisting of an integer number of cyclotron oscillations per wave oscillation.

Consider a Poincaré section of kρ, ψ = kx − ωt, by taking points when vy = 0, v̇y > 0.
Resonances exist for ω = 2/q for all integer q, associated with the unstable domains of
the associated Mathieu equation. Secularities are not found at fractional frequencies in
the standard Hamiltonian analysis[1] because the wave field is considered only to first
order, a higher order analysis demonstrates their existence. Figure 1a shows an example
of the resonances and the extent of the stochastic domain for ω = 1/4, with k2Φ0 = 0.77.
Heating of an initially cold distribution proceeds to the maximum limit given by good
KAM surfaces in a few hundred cyclotron periods. Even at a wave frequency of 1/10 of
the cyclotron frequency a Poincaré plot is quite stochastic for k2Φ0 = 1. The onset of
chaos at large wave amplitude as a function of ω is shown in Fig. 1b.

Alfvèn waves have been observed or predicted to be present in plasmas with parameters
ranging from those of laboratory to space and astrophysical environments. Previous
theoretical investigations of heating mechanisms have nearly always been based on the
existence of the primary cyclotron resonance, ie ω − kzuz ± nΩc � 0 where ω and �k
are respectively the angular frequency and wave vector of the Alfvèn wave, �B0 = B0ẑ



Figure 1: a. Poincaré plot for Electrostatic wave, k2Φ0 = 0.77, ω = 1/4. b. Stochastic threshold vs ω.

is the confining magnetic field, �u is the laboratory frame particle velocity, n ≥ 1 and ±
corresponds to right (+) and left (−) circular polarization. Such resonances will change
the magnetic moment µ = u2

⊥/2B0 leading to pitch angle scattering and heating. Since for
the Alfvèn waves ω � kzvA with vA = B/(4πn0mi)

1/2 the Alfvèn velocity, the cyclotron
resonance condition becomes kzvz = kz(uz − vA) � ±nΩc, where �v is the particle velocity
in the wave frame. Noting that typically |kzvA| < |nΩc| the resonance condition generally
requires that uz be super Alfvènic, a condition often not satisfied. Wu and coworkers[9]
have examined nonlinear interactions between ions and Alfvèn waves under nonresonant
conditions using a one dimensional (�k = kz ẑ) model, finding that while the Alfvèn waves
can lead to large amplitude oscillations in the ion motion, there is no stochastic heating.
That nonzero �k⊥ is necessary for stochastic heating has been noted earlier[10], but only
for cases in which the cyclotron resonance condition was satisfied.

For a sufficiently large-amplitude, obliquely propagating (�k = kz ẑ + �k⊥) wave, there
indeed exists efficient stochastic ion pitch angle scattering and heating by the Alfvèn
wave even when kzvz is only a small fraction of Ωc. Note for cold ions in the laboratory
frame vz = −vA so kzvz = −ω and this condition becomes ω � Ωc. The physics of this
stochastic heating is qualitatively similar to the electrostatic case, discussed above. To
demonstrate this similarity, consider a linearly polarized Alfvèn wave in the laboratory
frame X, Y, Z, given by �Bw = Bwŷcos(ψ) with ψ = �k · �X − ωt. Let the ions be initially
cold in the laboratory frame, so that ω = −kzvz = kzvA. Again take the units of time
to be given by Ωc, and normalize the field to B0. In the wave frame �x = �X − vAtẑ we
have ψ = kxx + kzz and the velocity v = vA is constant in time. Dimensionless numbers
characterizing the problem are then kxv, kzv = ω/Ωc, and the wave magnitude Bw/B0.

The equations of motion become v̇x = vy − vzBwcosψ, vy = x0 − x, v̇z = vxBwcosψ,
giving d2x/dt2 + x = x0 − vzBwcosψ. To first order in Bw we have d2x/dt2 + x =
x0 − vz(0)Bwcosψ, equivalent to the electrostatic case, with ω/Ωc = kzvz(0)/Ωc playing
the role of the frequency of the electrostatic wave, and kxvz(0)Bw/(B0Ωc) the nonlinearity
parameter. Thus there are resonances at many values of particle pitch in the wave frame.
However, note that kx = 0 implies no nonlinear interaction.



Figure 2: a. Stochasticity produced by a single circularly polarized Alfven wave with δB/B = 0.25
and ω = ωc/4. b. Ion heating due to this Alfven wave showing E⊥ (larger) and E‖ vs time.

We shall consider in the following only a left hand circularly polarized Alfven wave. Thus
we have, again in the wave frame �Bw = −Bwx̂cos(α)sin(ψ)+Bwŷcosψ+Bw ẑsin(α)sin(ψ)
with ψ = kxx + kzz and tan(α) = kx/kz. In the laboratory frame the wave propagates in
the +z direction, and in the wave frame vz/v = −1 for an initially cold ion distribution.
Figure 2a shows a Poincaré plot for a left hand circularly polarized wave with Bw = 0.25,
kxv = 0.27, ω = 0.25, formed by taking points when vy = 0 and v̇y > 0. All particles were
initiated with vz/v < −0.99, ie the initial ion distribution in the lab frame was cold. Ions
can readily diffuse from vz/v = −1 to values near -0.4. In Figure 2b is shown the heating
of an initially cold distribution. Since the distribution begins with λ = −1 the ions
mainly gain perpendicular energy and thus we see E⊥ > E‖ with E⊥ and E‖ respectively

the energies perpendicular and parallel to �B0. Two hundred cyclotron periods is sufficient
to heat to v � 0.25vA for these parameters. These results may provide an interesting new
mechanism of solar corona heating by Alfven waves[11]. The ion distribution produced in
this figure has a perpendicular thermal velocity of 250km/sec taking vA ∼ 103km/sec in
the lower solar corona. Since energization increases with ω/Ωc, this heating mechanism
will preferentially energize partially ionized heavier mass (lower Ωc) ions. These features
are consistent with observations[12].

The existence of resonances at fractions of the cyclotron frequency is a generic phe-
nomenon and may be expected to occur for other types of waves. This process also leads
to a mechanism that directly transfers energy from Super-Alfvenic ions to thermal ions
in high β plasmas. The mechanism involves the excitation of compressional Alfvén eigen-
modes (CAEs) in the frequency range with ω ≤ ωci. The broadband turbulence resulting
from the large number of excited modes causes stochastic diffusion in velocity space,
which transfers wave energy to thermal ions. This effect may be important on NSTX
[13], and may scale up to reactor scenarios. This has implications for low aspect ratio
reactor concepts, since it potentially allows for the modification of the ignition criterion.

Spherical torus experiments typically operate at very low values of the axial toroidal
magnetic field (0.3T to 0.6T). On NSTX, which operates with 80keV deuterium neutral



Figure 3: Heating simulation using wave spectrum with 0.2ωci < ω < 0.6ωci similar to compressional
Alfven waves predicted and observed in NSTX.

beams and 0.3T toroidal field, the neutral beam velocity is typically given by vbeam ∼ 4vA.
The existence of a large class of super-Alfvénic particles can change the regime from one
of weakly interacting waves to one where the wave amplitudes become large enough to
modify the thermal particle energy. The energy flow is from the fast particles to the
waves by resonance, and from the waves to the thermal particles by stochastic heating.
In tokamaks generally the heating particles are at best weakly super-Alfvénic and only a
small fraction of their total energy is available. In Fig. 3 is shown the results of a simple
slab geometry heating simulation, using a spectrum of modes estimated to exist in NSTX,
which demonstrates the feasability of this heating scenario.

In conclusion, large amplitude waves are capable of producing extensive stochastic heating
of a magnetized plasma at frequencies well below the cyclotron frequency.
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