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An understanding of the interface of a magnetized plasma in contact with a wall is of importance in 

many physical and industrial problems involving plasma-wall interaction. In tokamak physics, 

understanding of configurations with shallow angles of incidence of the magnetic field intersecting 

the wall is necessary to decrease the heat load for limiter and divertor design. These configurations 

are also relevant for the interpretation of probes measurement in magnetized plasma. In industrial 

applications, plasma etching and ion sputtering are at the core of a revolutionary electronics 

technology in microprocessor fabrication and in other material processing applications, whose theme 

is the design of matter on the molecular scale. In the present work, we study the problem of the 

formation of a steep gradient or plasma detachment at a plasma wall transition using a code in which 

the electrons, assumed to move along the magnetic field lines only, are described by a kinetic 

equation, and the ions are described by a fully kinetic equation in velocity space which integrates 

exactly the ions orbit. We consider a slab geometry in which the inhomogeneous direction y is the 

direction perpendicular to the plate. The z direction and the x direction are assumed homogenous. The 

constant magnetic field B is located in the (y, z) plane and makes an angle θ  with the y axis (or 

α = π/2 - θ with the z axis). The magnetized electrons are restricted to move along the magnetic field 

and are described using a kinetic equation in the direction along the magnetic field, with a distribution 

function fe(y, v||) (v|| is the velocity of the electrons parallel to the magnetic field): 
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The ions are treated using a fully kinetic equation in 1D which, in the present geometry, is written: 

( ) ( ) 0cossincossin =
∂
∂

+
∂
∂

−+
∂
∂

−+
∂
∂

+
∂
∂

z

i
cix

y

i
cixy

x

i
cizciy

i
y

i ff
E

f

y

f

f

f

ν
θων

ν
θων

ν
θωνθωνν (2) 

The electric field is calculated from Poisson equation, where != ν!dfn eiei ,,
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In Eqs. (1-3), time is normalized to 
1−
ipω , (so the cyclotron frequency ωci  in Eq. (2) is in fact 

ipci ωω / ). Velocity is normalized to the acoustic speed Cs, and the length to Deps i
C λω =−1

. We 

assume the initial distribution to be Maxwellian: 
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with Te / Ti equal to 2 in the present calculations. We take as initial profile: 

 ni = ne = n(y) = 0.5 (1 + tanh ((n - L/4) / 7)) (6) 

The boundary conditions on the distribution functions is to assume that for particles leaving through 

the right boundary at y = L, the plasma extend to an identical plasma so that for the plasma leaving 

with positive velocity the point next to the boundary point is identical to the boundary point, and 

similarly for the entering plasma with negative velocities. At the left boundary, particles hitting the 

plate are lost from the system and collected through the current delivered at the plate: 
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For the right boundary condition, we integrate the equation:    ( )ei
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over the domain; we get : ! =−=− ==
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The system is initially neutral ni=ne. The total charge which appears in the system σ, must be equal to 

the difference in the electric fields at the boundaries. If ,0==LyyE  then σ−==0yyE , and the 

charge which accumulates at the left boundary at any time calculated from Eq. (8) must be equal to 

the charge σ created in the system which was initially neutral. Equations (1-3) are solved with a 

method of fractional steps. The plasma is initially neutral. We run the code and let the initial 

parameters relax to an equilibrium. The time step used was ∆t = 0.025. The total length of the system 

was 150 Debye length. We use 220 points in space and 50 points in each velocity space direction, 

with velocities maxima equal ±5 Cs. Figure (1) shows the phase-space yvy −  calculated for the case 

α = 5°, 2/10/ =Dei λρ . It is clear the velocity is reaching a value close to the acoustic velocity at 

the left plate. In the bottom of Fig. (1) the cuts in the distribution function at a) y = 2.5 Deλ  and b) y = 

5 Deλ  shows clearly the drift of the distribution and at c) y = 15 Deλ ; d) y = 30 Deλ ; e) y = 75 Deλ . 

Figure (2) shows the phase-space yvy −  calculated for the case α = 0.75°, and 2/10/ =Dei λρ . It 

is clear that at the left plate there is no more acceleration as in Fig. (2). Figures (3) and (4), show the 

density plot (solid curve ions, broken curve electrons), for the two cases respectively. The case 



 

 

α = 0.75° in Fig. (4) shows clearly a steeper profile and the density reaching a very low value at the 

plate, the plasma effectively detaching from the plate (similar results have been reported for the case 

when the plate was kept at zero potential [1]). The charge ei nn −  is shown in Fig. (5) for α = 5°and 

in Fig. (6) for α = 0.75° (note the small values, especially in Fig. (6)). This charge is creating a 

potential. The small oscillation in Fig. (7) for α = 5° is small, and the oscillation in Fig. (8) for the 

case α = 0.75° is much more important. The corresponding electric fields are given in Figs (9) and 

(10) respectively. We present in Figs (11) and (12) the currents in the direction normal to the plate, 

respectively for α = 5°, and α = 0.75° (solid curve for the electrons and broken curve for the ions). 

The values of the current are very close for the two species, the currents for α = 0.75° is very much 

reduced, reaching the plate at the left at zero values. Work is in progress to study and analyze these 

oscillations. 

[1] M. Shoucri and K.H. Finken, Proc. EPS Conference (Budapest, June 2000). 

  

Fig. 1 Fig. 2 

  
Fig. 3 - α = 5° Fig. 4 - (steeper profile) α = 0.75° 



 

 

  
Fig. 5 - α = 5° Fig. 6 - α = 0.75° 

  
Fig. 7 Fig. 8 

  
Fig. 9 - (smaller electric field) α = 5° Fig. 10 - (smaller electric field) α = 0.75 

 
 

Fig. 11 - α = 5° Fig. 12 - α = 0.75° 
 


