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Abstract. To investigate the origin of Enhanced D, (EDA) operation in Alcator C-Mod,
analytic dispersion relations for Resistive Ballooning Modes (RBM) in the edge pedestal
are developed. Sound wave propagation and coupling to drift waves reduce linear growth
rates, but no stability threshold is found. Growth of the drift RBM peaks at relatively
low values of toroidal mode number, n.
1. Introduction

In EDA operation in Alcator C-Mod [1] a benign instability, the quasi coherent mode,
is observed in the edge pedestal where the local pressure gradient is steep, but insufficient
to drive Ideal ballooning instability. The quasi coherent mode is favoured by high safety
factor, ¢, and high collisionality, consistent with linear stability predictions for Resistive
Ballooning Modes (RBMs) [2]. Several recent studies, both linear [3] and non-linear [4, 5],
have been devoted to this topic. In much of this work a complex set of two-fluid Braginskii
equations is solved numerically, sometimes in a complicated equilibrium containing, or
simulating the proximity of, a magnetic separatrix. Instability is generally found, but
there has been little discussion of a stability threshold (as observed in Alcator C-Mod).
In this paper we return to the single fluid resistive MHD equations [2] to derive analytic
dispersion relations for RBMs adding various physical effects, including (1) sound wave
propagation, (2) A’; drive from the Ideal region in ballooning space, with poloidal angle
6 ~ 1 and (3) two-fluid diamagnetic effects. In Sec. 2 the analytic theory of single
fluid resistive MHD ballooning modes is extended by employing an ordering in which
the growth rate v is of the order of the sound frequency ws; = C;/Rq. The extension
to the drift-resistive ballooning dispersion relation is then obtained. This adds coupling
to electron and ion drift waves. Solution of the dispersion relation for the s — o model
equilibrium is presented and the results are summarized in Sec. 3.
2. Resistive and Drift-Resistive Eigenmode Equations.

In the v ~ w, ordering, numerical solution of the 4th order resistive ballooning equa-

tions for an s — o model [6] indicated that a stability threshold may occur at higher
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ws, but stability boundaries were not determined. However, in the v ~ w; ordering, if
e = (n?¢*/S)'/® < 1, with the Lundquist number S = 7, /74, a two length scale analysis
of the 4th order equations reduces them to a single second order ODE in the long scale
variable X = ¢Z/\/3, where Z = 50, s = rq'/q and 4 = y74/¢:
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with @ = —2Rp'¢*/B*. Equation (1) can be solved exactly, and the solutions matched
to the ideal region (X — 0) solution, where F' « 1 + Ay/Z, for Z > 1. Aly can be
evaluated by solving the Ideal s — a equation. It is positive throughout the first stability
region and — oo on the Ideal MHD stability boundary. The resulting dispersion relation
takes the form:
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Equation (2) determines the stability of resistive modes close to an Ideal MHD sta-
bility boundary. For smaller values of A, in the range ¢'/® < eAl; < 1, the simpler
dispersion relation, Alze = 0.68Q%’y%, follows from the small @ limit of Eq.(2). How-
ever, since the mode width (in ballooning space) is determind by @) o (eA’;)*, A’y controls
this width. As eA’y — 0 the eigenmode becomes increasingly broad (increasingly local-
ized in real space), and appears to become singular in the limit eA’y = 0. In fact, these
dispersion relations break down when €A% < ¢'/3) and a more sophisticated analysis is
required. To resolve this limit, we have developed a new ordering for the two length scale
averaging procedure, which extends to Z ~ ¢=%/3, beyond the usual resistive region which

has Z ~ ¢~!. In this region the eigenmode equation takes the form:

d2F 2 Q 4y/2
gy: Y |5 Ha Y Glg v /w)| =0 (3)

where § = (¢2/4)/3, Y = Z&2% The function G(g,7/w,), which determines the mode
width in the limit () — 0, is positive for real values of 7. Eigenvalues for Eq.(3) can
be obtained variationally by employing a trial function (with variational parameter o )
of the form F = Y'V2K, /4(cV?) {1 —Y[0A — (0/2)[’(3/4)/[’(5/4)]}, which correctly

matches to the ideal region. In the JA’y — 0 limit the dispersion relation is

Q + 2.465%(a'G)** = 0. (4)
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This resolves the mode structure for A’z ~ O(1), but the growth rate is still approximately
determined from ) ~ 0, since § < 1.

The growth rates of resistive modes are typically small and fall within the drift order-
ing, v < w,; [7]. A dispersion relation containing diamagnetic effects can be obtained by
the same averaging method, applied to the linearised two-fluid equations [§8], to generate
new expressions for the functions ) and G in Eqs.(1) and (3). Neglecting temperature
gradients and temperature perturbations, the resulting expression for ) is:
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where &, ; = wyjTa/e and &; = w,ra/e. The coefficient G and § = (2/(¥ + idj*e)]l/?’ also
become complex. For A’y ~ 1, Eq.(3), with the 2-fluid expressions for @) and G, must be
solved. In leading order the dispersion relation, () ~ 0 determines lowest order complex
eigenvalues, v = v9. However these only correspond to acceptable localized eigenmodes
if the condition Re[67* G(7,)] > 0 is satisfied. The lowest order dispersion relation takes
the form:

(3 + i) [(14205)07 + 4( + idne)| — 0%/2 = 0. (6)
In the absence of « this predicts three waves; an ion drift wave and a pair of toroidally
modified electron drift acoustic waves. As found in [7] in the w; = 0 limit, the pressure
gradient drives instability of the low frequency branch of the drift acoustic mode, with 4 ~
a?/(20?) when w,; > 7. This is typically a much weaker growth rate than that predicted
in the absence of diamagnetic effects, 4° = a?/2. However, solution of Eq.(5) shows that
the growth rate of the drift RBM is actually enhanced by sound wave propagation when
the low frequency electron drift acoustic mode is degenerate with the ion drift wave.
This occurs when w,;(we —wie) = (14 2¢*)w? and therefore at a particular value of the

toroidal mode number, n. For this mode number the growth is 4 ~ O.3a/c&l/2.

The effect of sound wave propagation on the RBM [2] and drift-RBM [7] is shown
in Fig.1. Case (a) shows the reduction in the RBM growth, 4, at fixed o, as w, =~
VB(S/n?¢*)'/? is increased. The parameters used are a = 1, ¢ = 4 and w,; = 0. Curve
(b) shows the growth rate for the drift-RBM, when &,; = —&.. = 4. Figure 2 shows the
dependence of the growth rates, ¥ = y74(S/q¢?)'/?, as a function of toroidal mode number,
n, for fixed plasma parameters: a =1, g =4, S = 10°, 8 = 0.0006, with w,; = 0 for case
(a) and @, = —w. = 2 at n = 1 for case (b). A peak in 4 for the drift RBM is seen at
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low n. Evaluating the sign of Re[§'2(7] establishes that the drift resistive eigenfunction

is localized in Y for n > 1.
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3. Conclusions
Analytic resistive ballooning dispersion relations, appropriate for collisional plasma
conditions in the edge pedestal of a tokamak have been derived. These extend the original
analyses [2,7] by describing the effects of matching to the ideal region and coupling to
drift-acoustic modes. Diamagnetic and sound effects interact to produce a peak in v at
intermediate values of the toroidal mode number n. For parameters typical of the edge
pedestal in Alcator C-Mod this peak occurs at n = 2. An eigenmode equation for drift-
visco-resistive ballooning modes has also been derived and preliminary results show that
perpendicular ion viscosity strongly modifies the radial localization of the drift RBM.
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