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INTRODUCTION

Consistent gyrophase averaging of the Fokker-Planck equation for magnetically

confined, weakly collisional, axisymmetric toroidal plasma is performed using Lagrangian

coordinates [1] transformed from Eulerian space and employing a multiple timescale

approach [2]. The drift kinetic equation applicable for the case of ions having poloidal

gyroradii in the order of the plasma inhomogeneity scale length is derived. The collision term

may be represented as a sum of the conventional collision operator and the additional

contributions arising from the incorporation of finite Larmor radius effects and leading to

diffusion in both velocity and real space.

INITIAL EQUATIONS

The kinetic equation for the distribution function of energetic particles is written as
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where
ix are arbitrary phase-space coordinates, ( )C fx is the collision operator and S a fast

ion source. The collision term in Eq. (1) is a differential operator of the form
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with d being the vector of the “dynamic friction force”, D
�

the diffusion tensor, both defined

in the velocity space, and I
�

is the unit dyad, V the particle velocity; ⊥νν ,S and IIν are the

characteristic collision frequencies of slowing down, transverse and parallel diffusion.

The conventional theory is essentially Eulerian in nature, working with the

independent velocity and spatial variables that are not constants of the orbital motion.

However, many of the concepts in neoclassical theory involve orbital properties and are

Lagrangian [1] in nature. Here we present a transport theory for energetic particles using

what amounts to the Lagrangian picture.

TRANSFORMATION OF COORDINATES AND AVERAGING PROCEDURE

Considering the motion in a strong, but slowly varying magnetic field B, it is

convenient to carry out gyrophase averaging and to focus attention on the motion of the



guiding centre. Following conventional drift theory, one can define a set of three orthogonal

unit vectors
0 1 2

( , , )e e e such that
0

, [ ] .i j kB= =e B e e e If we express the particle position by

the guiding centre position (R) and the Larmor rotation (
�

) [3], ,= +r R � then the

Larmor rotation can be represented by

( )1 2
sin cos , / ,Vρ α α ρ ⊥= − = Ω� e e ( )0 1 2

cos sinV V α α⊥= + +V e e eII , (3)

where Ω is the particle gyrofrequency and α the gyro phase; IIV and ⊥V are the longitudinal

and transverse components of V .

As velocity variables one can choose {V,ξ,α} with VV
||

=ξ , and as spatial Eulerian

variables one may introduce the flux coordinates {Φ,θ,ϕ}, where Φ is the toroidal flux, θ and

ϕ the poloidal and toroidal angles, so that the magnetic field can be represented in the form

,θ ι ϕ= ∇Φ × ∇ − ∇Φ × ∇B (4)

with ι (Φ) being the rotational transform.

Deriving the drift kinetic equation within conventional theory [4] one first arranges

the LHS of Eq. (1) in orders of the gyro radius and then averages over the gyro phase,

whereas the collision operator on the RHS of Eq. (1) is evaluated only at the guiding center

position R. For a more consistent way of evaluation we transform from Eulerian (x) to

Lagrangian variables (z) taking into account the corrections arising from the Larmor gyration,

and then perform the gyrophase averaging of both the LHS of the Fokker-Planck equation

and of the transformed collision operator.

The most practical way for a correct averaging is the use of constants-of-motion

variables: the energy ε, the magnetic moment µ and, in the case of axisymmetric

configurations ( 0ϕ∂ ∂ = ), the longitudinal adiabatic invariant ϕP . The Fokker-Planck

equation can be rewritten in Lagrangian variables z=( , , ; , , )Pϕε µ α θ ϕ as
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with
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V � � and Ψ being

the poloidal flux and
0

R the major radius. For the averaging procedure, we should distinguish

between oscillating and non-oscillating terms in Eq. (5). Any function of spatial variables can

be given as one at the guiding center position plus the correction arising from Larmor

oscillations such as
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Hence the collision term is written as a sum of the conventional collision operator and the

additional contributions arising from the inclusion of finite Larmor radius effects:
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The largest term (0
th

order in ρ) in Eq. (5) is

0,f
α
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∂
(8)

which means that f does not depend on α . Assuming axial symmetry of the configuration

and accounting for the fact that energy and the longitudinal adiabatic invariant are well

conserved, the next order equation can be derived. Regular gyro-oscillations of the magnetic

moment will vanish by gyro-averaging implying the conservation of µ . However, non-

conservation of the magnetic moment may occur due to resonance between cyclotron and

bounce oscillations [5].

In the case of adiabatic behavior the LHS of Eq. (5) will have only two dimensions

corresponding to gyration and bounce oscillations,
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where on the RHS only the corresponding order contribution should be considered. With the

source term being independent on Larmor gyration, averaging over α yields finally
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Evidently, the oscillating part in Eq. (9) is determined by the difference
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from where the part f


of the distribution function may be found, which is associated with fast

Larmor gyration. Since it is small in comparison with f , i.e. / ( / )Sf f O ν Ω
� �

, we

neglect f


in our further calculations.

COLLISION INDUCED DIFFUSION

The transformation of diffusion coefficients to the z-space is accomplished by
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Gyrophase averaging yields two expressions, one for the conventional collision operator,
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where
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and one representing the additional Larmor-contribution
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with the non-zero terms
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Here
1 2 4

, ,z z z Pϕε µ= = = . Thus, deriving the drift kinetic equation consistently

throughout, i.e. considering Larmor motion on both sides of the Fokker-Planck equation, has

resulted in additional contributions to the transport coefficients.

CONCLUSIONS

For a magnetically confined, weakly collisional, axisymmetric toroidal plasma the

consistent gyrophase averaging of the Fokker-Planck equation, i.e. considering Larmor

motion also in the collision operator, has lead to a drift kinetic equation containing additional

terms indicating enhanced collision induced diffusion both in velocity and real space. This

modification of diffusion and convection transport is suggested to be important for the

description of NBI ion behavior in spherical tokamaks and present-day stellarators, as well as

for charged fusion products in future toroidal devices, where the ions can have poloidal gyro

radii in the order of the plasma inhomogeneity scale length.
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