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1. The model

The parameter validating the linear and quasilinear theory for ECRH using the 2nd

harmonic X-mode is τf/τbE = δL |ωc0|
√

NE/B0v⊥/(v‖c), where τf and τbE are the time

of transit through the ECRH beam and the bounce time of particles trapped in the wave

field, respectively. δL, N , E and B0 are the beam width, the wave refraction index,

the amplitude and the main magnetic field strength, respectively. One can check that

for present day experimental parameters, the condition τf/τbE < 1 is violated and that

the problem of wave absorption has to be treated taking into account the nonlinear

wave-particle interaction.

Here, a model with a uniform magnetic field directed along the z-axis and an ECRH

beam propagating in x-direction is used. The system is assumed to have a period length

L over z. Two cuts, A and B located on both sides of the rf interaction zone (see Fig.

1) are introduced. In this geometry, neglecting the effect of cross-field transport, the

kinetic equation can be transformed to a 2-D integral equation (mapping equation) for

the particle flux density through the cuts A and B extended in velocity space, Γ =

v‖Jf . Here, J is the phase space Jacobian, and f is the particle distribution function.

The mapping of the particle position in phase space between the cuts, Γ = P̂cP̂rfΓ, is

incorporated with two propagators, P̂c for Coulomb collisions and P̂rf for wave-particle

interaction. The integral representation of these mapping relations is given as

ΓA(v⊥, v‖, t)=
∫ ∞

0
dv⊥0

∫ ∞

0
dv‖0

∫ ∞

−∞
dt0 p+−(v⊥0, v‖0; v⊥, v‖, t − t0)ΓA(v⊥0, v‖0, t0)

+
∫ ∞

0
dv⊥0

∫ 0

−∞
dv‖0

∫ ∞

−∞
dt0 p−−(v⊥0, v‖0; v⊥, v‖, t − t0)ΓB(v⊥0, v‖0, t0) (1)

where p+− is a transition probability density (TPD) from v⊥0, v‖0 > 0 on cut A to v⊥,

v‖ < 0 on cut A and p−− is a TPD from v⊥0, v‖0 < 0 on cut B to v⊥, v‖ < 0 on cut A.

The expression for ΓB has a symmetric form. The operator P̂rf is discretized,
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ΓB

(
I⊥, v‖

)
=

∞∫

0

dI ′
⊥PAB

(
I⊥, I ′

⊥; v‖
)
ΓA

(
I ′
⊥, v‖

)
, v‖ > 0, (2)

ΓA

(
I⊥, v‖

)
=

∞∫

0

dI ′
⊥PBA

(
I⊥, I ′

⊥; v‖
)
ΓB

(
I ′
⊥, v‖

)
, v‖ < 0, (3)

PAB

(
I⊥, I ′

⊥; v‖
)

=
∞∑

i,j=1

δ
(
I⊥ − I ′

⊥ + I
′(j)
⊥ − I

(i)
⊥

)
P ij

AB

(
v‖

)

× Θ
(
I
′(j+1)
⊥ − I ′

⊥
)
Θ

(
I ′
⊥ − I

′(j)
⊥

)
, (4)

where the transition probabilities P ij
AB are numerically obtained by following the particle

orbit in the wave electric field E = E0Re
[
fF (r)ei(kr−ωt)

]
. Here, E0, f ≡ E/|E| and

F (r) = exp (−α(z2 + y2)/2) are the wave amplitude, the polarization vector and the

form factor for the Gaussian beam shape, respectively. The Hamiltonian is of the form

H = m0c
2γ − vEkn0−1

⊥ |2m0ωc0n0I⊥|
n0
2

2(n0 − 1)! (2m0ωc0)
n0−1 |f−|F (R) sin (k‖z + ψ)− ωI⊥. (5)

Here, n0 = 2 and k‖ = 0 (perpendicular injection). ψ = n0φ − ωt + ψ0 is the wave-

particle phase, φ the particle gyrophase, vE ≡ eE/(m0ω), m0 is the particle mass, and

ωc0 is the gyrofrequency at rest. Eq. (5) is the conventional form of the Hamiltonian

where the expansion over a small electron Larmor radius has been used where only the

resonant term is retained [2].

For computing the transition probabilities, the phase space is discretized with respect

to the canonical action I⊥ by introducing levels I i
⊥. The TPD P ij

AB from the band

between levels Ij
⊥ and Ij+1

⊥ on cut A to the band between the levels I i
⊥ and I i+1

⊥ on cut

B is defined as the overlapping area of the image of the band from cut B mapped to

cut A along the orbits with the band on cut A normalized with the total band area

(Fig. 1). This information is obtained numerically and stored on a grid of v‖ values.

In the considered case, the change of v‖ is negligible and the Hamiltonian system can

be transformed, by neglecting small parameters, to the form where v‖ is an invariant

of motion. Of course, in general the Hamiltonian itself is an invariant of motion. In

the case of the adiabatic model, the P ij
AB have a simple form, P ij

AB = 1
2
(δi,j + δi,k0−j) for

kmin < i, j < kmax and P ij
AB = 1 otherwise. Here, Ik0

⊥ = I⊥(vres
⊥ ) with vres

⊥ being the

position of the resonance zone in the linear case and Ikmin,kmax

⊥ = I⊥(v
min,max
⊥ ) defines

the boundaries of the nonlinearly broadened resonance zone.

2. Computation results

The integral equation is solved using the Monte Carlo (MC) algorithm. The propaga-



tor P̂c is sampled with a conventional MC method (see e.g [1]). Examples of transition

probabilities, P ij
AB, used for sampling the rf propagator are shown in Fig. 1 for particles

with a high v‖ when the quasilinear theory is valid, with a medium v‖ and for particles

with a low v‖ when the adiabatic theory is formally valid. The structure on the right

side is due to the particle phase memory in the beam - an effect discarded by adia-

batic theory. In Fig. 3 a typical particle distribution function in the nonlinear case is

shown. This distribution function is asymmetric and a plateau-like structure is formed

around the resonance zone. Here, unlike in results of the quasilinear theory, regions

with positive derivative with respect to the perpendicular velocity appear. With such

a distribution function, the absorption coefficient (Fig. 4) is computed. It is given as

αNL = (
∫
dzPabs) (

∫
dzSx)

−1, where Sx denotes the Poynting flux and Pabs the absorbed

power density. The absorption coefficient is strongly reduced as compared to the linear

theory due to both the distortion of the particle distribution function and the nonlinear

nature of the wave-particle interaction. As a result, the absorbed power profile, for a

typical set of parameters (see [3]), appears to be essentially broader than predicted by

linear theory with an optical depth reduced by a factor of 10.

3. Conclusion

A numerical model for ECRH which consistently takes into account nonlinear wave-

particle interaction has been developed. The results of computations show that the

distortion of the particle distribution function from Maxwellian is strong for parameters

typical for present day ECRH experiments. This leads to a reduction of the absorption,

consequent broadening of the absorption profile and incomplete absorption. The assump-

tions made within this computation are not essential and the consideration of a realistic

situation is straightforward. Especially, for realistic magnetic field configurations, the

propagator P̂c can be sampled using the mapping technique [4]. It should be mentioned

that the distortion of the particle distribution function is essentially different from what

is expected from the quasilinear theory where a Fokker-Planck equation is assumed to

be valid. The effect of power redistribution in velocity space can especially be important

for current drive. Therefore, the nonlinear rf interaction has to be properly described.
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Figure 1: Geometry (left) and scheme for discretized transition probability densities.

Figure 2: Color density plot of transition probability densities for canonical perpendicular
action when traveling through the wave beam. Increased nonlinearity from left to right.

Figure 3: Distribution function and its contour.

Figure 4: Absorption coefficient, field line integrated absorbed power density profile and
optical depth. Bs = 2.5 T, Rs = 200 cm, b = BsRs. Density profile is parabolic with
maximum n0 at plasma major radius Rs.


