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RF inductive discharges are widely used for the state of the art plasma etching which is at the core of 

a revolutionary electronics technology in microprocessor fabrication and in other related material 

processing applications, whose theme is the design of matter on a molecular scale. In the present 

work, we present the first self-consistent simulation of such a discharge using a kinetic Eulerian 

Vlasov code to follow the fully nonlinear electron and ion dynamics. The electrostatic potential is 

calculated self-consistently on the wave time-scale, together with the associated longitudinal electric 

field and current at the second harmonic of the applied RF field. The generated second harmonic 

currents are more pronounced at lower frequency, in qualitative agreement with experimental 

observation. 

The code is one-dimensional (1D) in x and applies a method of fractional steps for the solution of the 

Vlasov-Maxwell kinetic equations [1]. A RF coil excites an inductive electromagnetic field at the 

x = 0 boundary. The electrons are reflected at x = 0 to model the presence of an electrostatic sheath 

potential, and the ions are also reflected to preserve neutrality. This electromagnetic field which 

penetrates the plasma has the components zzyy etxBBetxEE ),(,),( ==
!!

. Ey and Bz are related 

by Faraday’s law 
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The kinetic equation for the electrons and singly ionized ions is the one-dimensional Vlasov 

equation: 

 0
,

,

=
∂
∂

!!
"

#
$$
%

&
+±

∂
∂

+
∂
∂

x

e
z

iye
x

ie

e
x

e f
B

c

u
E

m

e

x

f
v

t

f

ν
 (1) 



 

 

There is no y dependence. The canonical momentum: yyieiye A
c

e
mP ±= ν

,,
 is conserved. We 

assume that the plasma is cold in the transverse direction y. In view of the conservation of the 

canonical momentum, Pye,i can be chosen initially to be zero. Then the y velocity components of 

electrons and ions obey their respective fluid equations. 
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Maxwell's equations are written in terms of cBEF zy /±=±
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and the time step cxt /∆=∆  is chosen so that these fields are shifted one cell per time step without 

any interpolation [1]. Equation (1) is advanced in time using a fractional step or splitting technique, 

associated with cubic spline interpolation [1] and Ex is calculated from Poisson’s equation: 
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We note that the longitudinal electrostatic field Ex, whose calculation is so important [2], and which 

is often neglected in particle-in-cell code simulations of discharge plasmas [3], possibly due to 

statistical noise problems, is calculated here self-consistently using the accurate scheme presented in 

Ref. [4] and previously used in Ref. [1]. The simulation parameters which we choose are typical of 

inductively coupled discharge plasmas [3] (argon, with Te = 5 eV, ne = 10
12

 cm
-3

, 
π

ω
2

 = 13.56 MHz.) 

Simulations were also done with argon with a lower frequency f/2. At x=0, a RF field 

F
±
 = 2Eo sin ωot (with Eo ≈ 4V/cm) is applied, and penetrates the plasmas. For the present model and 

parameters, the decay of the electromagnetic field very closely follows the usual law for the ordinary 

skin effect, )/(exp sx δ− , with the scale length equal to the usual skin depth pes c ωδ /= . 

Figures 1-2 show the space-time profiles during one wave period of the transverse electric field Ey, 



 

 

the induced magnetic field Bz. In Fig.(3) we present the total acceleration term zyex BuE +  near the 

edge. The density is presented in Fig. (4). In Fig. (5) the total current, Jx = Jex + Jix is presented. It is 

seen that the ion current nearly cancels the electronic current, and that the assumption [2] that the ion 

current does not respond to the field at the harmonic frequency is false for the specific case which we 

have considered here. Similarly, the net charge (ni – ne)/no, is quite small but finite, 2 × 10
-4

. An 

interesting observation presented in [5] is that the currents at the second harmonic are more 

pronounced at lower frequency. We repeated the previous simulation using a RF frequency half the 

one previously used (6.78 MHz), and kept the same peak value of the RF electric field. All other 

parameters remained unchanged, including the incident electric field amplitude of approximately 

4V/cm. The longitudinal electric field Ex and the total acceleration term zyex BuE +  have a peak 

about 4 times higher compared to the previous case. The peak of the total current density Jx, 

presented in Fig. (6) has approximately doubled with respect to what is shown in Fig. (5). 
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Fig. 1 Space-time profile of the transverse 
electric field Ey. 

Fig. 2 Space-time profile of the wave magnetic 
field Bz  

  

Fig. 3 Total acceleration term Ex + uye Bz 
near the edge (up to 0.133 cm). 

Fig. 4 Electron density 

  

Fig. 5 Total current density J x= Jex + Jix , 
in amp/cm2 calculated at a frequency 
of 13.56 MHz.. 

Fig. 6 Current density Jx = Jex + Jix  
in amps/cm2 calculated a frequency 
6.78 MHz. 

 


