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Neoclassical tearing modes (NTMs) have been found to often determine the achiev-
able (3 in long-pulse discharges in tokamak devices, and are predicted to be the most
significant 3 -limiting phenomenon for ITER. The NTM occurs when a sufficiently large
resonant magnetic perturbation, the so-called “seed” island, is produced by the back-
ground MHD activity. The perturbed magnetic configuration leads to a flattening of the
pressure profile inside the island and, consequently, to a loss of the bootstrap current,
which in turn reinforces the perturbation and drives the instability.

The theoretical description of NTMs is based on the generalized Rutherford equation
[1], in which the various mechanisms that can stabilize or destabilize the mode are taken
into account. It is obtained by integrating Ampere’s law across the island region, using
Ohm’s law to express the inductive contribution to the current density. The result is an
evolution equation for the island half-width W
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In the previous equation, 7 is the neoclassical resistivity, A’ is the stability index of

(1)

the equilibrium current profile [2], ¢ is the safety factor, R is the major radius, s is
the magnetic shear and B the magnetic field strength. A helical angle &€ = mf — nyp
where m and n are the poloidal and toroidal number of the resonant rational surface
and € and ¢ are the poloidal and toroidal angles, respectively, has been introduced
along with a normalized helical flux Q = (¢ /2¢,) (1) — b5)? /1) — cos & , where @ is the
unperturbed poloidal flux, the prime denotes the derivative with respect to 1, 1 is the
strength of the flux perturbation and the subscript s means that a quantity is evaluted
at the resonant surface. €2 is defined in such a way that B-VQ =0 and 2 = —1 at the
O-point of the island and 2 =1 at the separatrix. Here, the only contribution to the
non-inductive part of the current gt is supposed to be given by the bootstrap current

Jvs » which must be calculated in the perturbed magnetic configuration and substituted
in Eq. (1). This yields
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where ay is a numerical coefficient of order one, 3y = 87p/Bj; (p is the pressure and
By the poloidal field), 1/L, = dIng/dr, 1/L, = —dlnp/dr and ¢ = ry/R is the
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inverse aspect ratio of the resonant surface. In the previous equation, the role of finite
perpendicular transport in preventing a complete flattening of the pressure profile inside
the island [3] has been taken into account and the corresponding reduction of the neo-
classical drive is expressed by the term containing Wy = 2.55r5(x 1 /x)"/*(q/mse)'/? .
An important remark to Eq.(2) is to be made. In order to obtain an analytic expression
for jps to be substituted in Eq. (1), it is supposed that the island width W is much
larger than the ion banana width w, = \/epy , where py = vy /wey is the ion poloidal
gyroradius (vr is the thermal velocity of the ions and w.y is ion cyclotron frequency
calculated using the poloidal magnetic field). In this limit, the bootstrap current com-
pletely vanishes inside the magnetic island (if the aforementioned finite- x, effect is
neglected). However, the opposite limit also deserves careful investigation, since at least
in the early phase of a NTM it is often w, ~ W . In this case, it can be thought that
the particles trapped in the region around the island (where the pressure gradient is not
flat) significantly overlap the island and might then provide the source for the bootstrap
current also inside it. This effect is of course supposed to be larger for the ions than for
the electrons, which have a much smaller banana width.

The role of the finite banana width of the ions is studied by solving the drift-kinetic
equation for the ion distribution function

a _of
dt ot
in the presence of an island (the width of the island is kept constant and its position in

the plasma is held fixed). The Jf method is employed. The solution f of Eq.(3) can
be written as the sum of f; which is analytically known and a second term df which

+ (yb +va) - V= C(f) (3)

expresses the temporal evolution of the distribution function and is to be determined
numerically. In our approach, Jf is represented by the distribution in the phase space
of an ensemble of markers (‘particles’) which evolve according to a Hamiltonian set of
equations of motion. Here fy is assumed to be a Maxwellian [y, ; Eq. (3) then gives

oof
ot

Eq. (4) is integrated over a collisional time interval Atf, in two steps. First, the markers

+ (vb +va) - Vof = C(6f) = va- Viur. (4)

evolve collisionfree according to the equations of motion. They are integrated using
the guiding centre code HAGIS [4], which solves the equations of motion in toroidal
geometry in the presence of a perturbation of the magnetic equilibrium employing Boozer
coordinates. In a second step, collisions are modelled by a Monte Carlo procedure [5].
The parallel velocity of the particles obtained from the first step is modified according to
the pitch-angle part of the collision operator. The change in the parallel velocity of the
particles can be written dvy = —v At + yv\/vAt, (so that 6v3 = —(2v) + dv))dy ),
where v(v) = (3v2n/47;)(vr/v)® G(v/vr), 7; is the ion-ion collision time, G(z) =
[(z? — 1/2) erf(z) + z exp(—x?)/\/7]/x® and 7 are random numbers such that (y) =0
and (y?) = 1. The scheme is implemented in such a way that momentum is conserved.
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Quantities of interest are obtained by flux surface average according to the definition
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where dI' is the phase-space volume element. Therefore, the plasma column is divided
into cells, bounded between two neighbouring flux surfaces (labeled by the helical flux

The approach described previously is applied to the study of the bootstrap current in
the island region for the case of a (3,2) mode in a tokamak with ITER-like and ASDEX
Upgrade (AUG)-like parameters. The magnetic equilibrium is specified analytically and
the unperturbed flux surfaces are circular and concentric. The parameters are chosen
such that the bounce time 73 = qR/vp+/¢ is much shorter than the trapped-to-passing
scattering time 7s = £/v;, and the plasma is hence in the banana collisionality regime
v, = Tp/7s < 1. In order to investigate finite-banana-width effects on the neoclassical
drive of the tearing mode, the bootstrap current in the island region has been studied
varying the ratio w,/W .
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Fig. 8. Averaged current density inside the island versus the ratio wy,/W . Diamonds refer to simula-
tions performed using ITER parameters, triangles to AUG parameters with hydrogen plasma, stars to

AUG parameters with deuterium plasma.

The results are summarized in Fig. 3. The averaged current density inside the island
Jist (normalized to the unperturbed current density at the resonant surface) is plotted
as a function of the ratio w,/W for ITER and ASDEX Upgrade parameters. For large
values of the island width, j;; — 0 according to the standard picture of the NTM.
When the island width is reduced, j;;; increases until it reaches the unpertubed value
for W =~ wy . In this case, no perturbation of the ion bootstrap current is present in
the plasma and there is no ion contribution to drive of the mode. This has significant
consequences for instance for AUG, since the typical width of the seed island which
triggers the mode is between 1 and 5 cm, and the width of a banana orbit is between

7 mm and 3 cm, depending on both the plasma composition and discharge parameters.
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Hence, at least in its early phase the NTM is more stable than usually assumed. The data
can be fitted by the curve Jjisi/junpert & 72/(1 + 72?) showing a quadratic dependence
on z = w,/W . This can be connected with the rough estimate that the strength of
finite-banana-width effects is proportional to the area of the island overlapped by the
trapped particles.

It is interesting to finally discuss the scaling of 3y at the onset of the NTM as a
function of the normalized ion poloidal gyroradius p; = pyp/a (where a is the minor
radius of the tokamak). At AUG, a linear scaling law (35" o p;'%? has been observed
[6]. Supposing Wy < wy , it can be assumed that the most important stabilizing effect for
the ions at small island widths is that presented in this paper (the role of the polarization
current is neglected). For the electrons, the finite perpendicular transport can be taken
as the main stabilizing effect at small island widths. The Rutherford Eq. (2) might
therefore be modified to
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where the second term between parentheses has been taken according to the fit of Fig. 3.
The value of (35" corresponding to marginal stability ( dW/dt = 0 for some given seed
W = Wieea ) can be calculated directly from Eq. (6). In the limit W, < w, this yields

o VY wy
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where y = Wyeea/ws . The scaling Wieeq/r o< pp°® has been predicted theoretically
[7], where the exponent « depends on the details of the physical model. A fit to AUG
data gives [8] « =~ 0.38. Since it is clearly wp/r o pj , it results that y depends
very weakly on pj . Eq.(7) hence gives (35" oc wy/r o< pj which is in agreement with
the experimental observations of AUG. This model provides then an alternative to the
polarization current model for the explanation of the observed scaling.

All previous studies have neglected the overlap of the seed island by the trapped
particles. This effect is expected to be significant for both the interpretation of the
experimental results as well as the extrapolations to future machines.
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