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1. Introduction.

The possibility to improve confinement in tokamaks by seeding of impurities has been

successfully realized in several devices [1,2,3]. However earliest trials on JET [4] were not

encouraging and sowed doubts that this mode of operation can be achieved in large machines.

New series of experiments performed during the past year have shown that also in JET a

positive effect of impurity seeding can be attained through an optimization of the puffing

scenario. E.g., carefully dozed puffs of argon allowed to maintain good confinement in the H-

mode discharges at an electron density close to the Greenwald limit.

In this contribution we present the results of theoretical analysis and numerical modelling of

another scenario performed on JET with neon impurity seeded into L-mode discharges. This

choice is explained by several reasons. First, the theoretical models applied for our study were

developed to analyze the results from TEXTOR[2] and DIII-D[3] where the stage of improved

confinement, the so called Radiative Improved (RI) mode, was achieved starting from the L-

mode conditions. Up to now these models do not include the edge barrier and are limited in

applications to the H-mode conditions. Second,  although transiently the most characteristic

features of the classical RI-mode such as peaking of density and pressure have been seen in JET

namely under these conditions. As an example Fig.1 shows the radial profiles of plasma

parameters measured in #50329 before and after Ne puff.

2. Gyro-Kinetic Stability Analysis

Characteristics of drift instabilities, which provide the main contribution to the anomalous

transport in tokamaks, namely the ion temperature gradient (ITG) and dissipate trapped electron

(DTE) modes, have been intensively analyzed by the code for Gyro-Kinetic Stability (GKS) for

a wide range of wave numbers [3]. These simulations show that seeding of impurities results



mostly in reduction of the growth rates for perturbations with small perpendicular wave

numbers corresponding to ITG modes. For discharges with unbalanced neutral injection GKS

computations predict an important role of ExB shearing leading to complete stabilization of

these modes. However, even in this case the strong shearing of the toroidal rotation, which

provides the main contribution to ΩExB, occurs at the discharge stage, when the ITG growth rate

is already significantly reduced by the direct effect of impurities. Therefore in the predictive

transport modelling only the latter has been taken into account. A firm consideration of the role

of ΩExB, which requires a self-consistent description of the plasma rotation, will be done later.

3. Predictive transport modelling

Two approaches have been applied to perform a predictive transport modelling of the L-mode

plasmas in JET seeded with impurities. The Chalmers advanced fluid model [5] for temperature

gradient driven instabilities was used to determine all anomalous transport coefficients

necessary for transport modeling. A code based on this model was successfully run before to

simulate standard L and H-mode discharges in JET and ASDEX-U. In computations performed

for L-mode discharges in JET seeded with impurities the radial profiles of the particle densities

and temperatures are computed using the sources from interpretive calculations. The results of

this study indicate, that the reduction in the transport occurs because of the increase in the

plasma effective charge, Zeff, and due to the reduction in the electron density at the plasma

edge, which leads to reduction in the parameter ηi=Ln/LT.

The conclusion above agrees principally with the results of modelling by the code RITM [6].

This code provides a self-consistent description of the transport of recycling neutrals

(molecules, reflected, Franck-Condon  and hot atoms), electrons and ions of the working gas
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and all charged states of He, C, O, Ne and Si impurities, the energy transfer in the electron and

ion plasma components and diffusion of the plasma current. RITM operates with a half-

empirical model for ITG and DTE induced anomalous transport, proposed initially to simulate

the plasma evolution in the RI-mode in TEXTOR-94 [7]. This model has been amended by a

proper description of the DTE transport at a low collisionality typical for JET. The particle

fluxes contain both diffusive and convective part: Ze
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The results of computations with RITM presented in Fig.2 reproduce the peaking of the density

and pressure profiles. This is caused by reduction in  ITGD⊥  with Zeff increasing during impurity

seeding, which is also demonstrated in Fig.2. As a result the ratio ee DV ⊥⊥ /  increases and the

electron density peaks. These results allow to interpret the necessity of a significantly higher

plasma effective charge in JET than in DIII-D and TEXTOR in order to get a RI-mode effect:

5-7 res. 2-3. The ratio ee DV ⊥⊥ / , which controls the density peaking, is governed by the value

ITGDTE DD ⊥⊥ /  and for a transition to the RI-mode the latter should exceed a critical level [7].



On the one hand for plasmas of low collisionality as in JET, where the electron drift frequency

exceeds the effective collision frequency of trapped particles, e
DTE nD ∝⊥ [11]. On the other

hand ITGD⊥  decreases with increasing Zeff and ITG transport is suppressed completely when the

plasma effective charge exceeds a certain critical level [7]. Thus the lower the plasma density

the higher Zeff , at which ITGDTE DD ⊥⊥ /  approaches its critical level. Since the plasma density in

JET L-mode is significantly less than in DIII-D and TEXTOR the required Zeff is larger in JET.

4. Conclusion

The Gyro Kinetic Stability modelling  predicts importance of direct impurity effect on

turbulence. In particular this is necessary to get a strongly sheared toroidal rotation, which

activates the “suppressive” role of the radial electric field. Predictive modeling with theoretical

transport models, which take into account only this direct effect of impurities, reproduces

peaking of  profiles by seeding of neon into JET L-mode discharges. Low plasma density in

JET requires a higher than in DIII-D and TEXTOR Zeff to trigger the L-RI transition.
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Fig.2. Computed  profiles of the electron density and pressure and diffusivity for # 50329


