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Introduction

The DED coil system of TEXTOR will generate electromagnetic waves which penetrate
into the plasma volume. These waves induce currents within the plasma, in particular
near the resonant surface q = 3 located at the edge. The coupling between the DED fields
and the plasma is of high interest in view of ergodization of the magnetic field (transport),
shielding of core plasma, coupling of momentum to the plasma fluid (rotating plasma)
[1]. It is assumed that the physical processes can be studied within the 2-fluid description
of an electron-ion plasma in the following way; in a first step the small amplitude DED
perturbations are calculated in the linear approximation; in a second step, the “slow”
evolution of the background is calculated in the quasilinear approximation. The source
terms of the quasilinear equations are obtained from the solution of the linear wave
problem.
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where Qα denotes the heat acquired by species α through collisions with the other species.



Numerical Realization

In the linear problem, a coupled system of first order ordinary differential equations with
varying coefficients in the form

du

dr
= A(r) · u,

with appropriate boundary conditions at the center of the cylinder, at the wall and at
the antenna location has to be integrated numerically. In general this is a stiff problem,
i.e., one of the eigenmodes grows much faster than the others. As a consequence, due
to finite numerical accuracy of the integration process, the corresponding polarizations
vectors become aligned and one cannot solve the boundary conditions at the antenna any
more. In order to overcome this problem, a complete set of linearly independent modes
which satisfy the boundary conditions at the center of the torus is integrated towards the
antenna. The integrator routine contains a Runge-Kutta core and an orthonormalization-
rescaling algorithm, i.e., the solution vectors ui are orthonormalized into the set ei during
integration in prescribed intervals,
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The same procedure is used to integrate from the wall towards the antenna. At the
the location of the antenna the remaining set of boundary conditions is used to find
the appropriate combination of the modes and the solution vectors are obtained from
rescaling backwards to center and wall. A post-processor module calculates the remaining
quantities of physical interest. The modular structure of the code allows its application
to a wide range of problems with inherent stiffness.

Figures 1–4 demonstrate the integration-orthonormalization procedure for the par-
ticular case of a cold plasma (two waves) and a DED frequency of 1 MHz. In this case,
there exists a monotonic increasing fast mode with a characteristic scale of 4.5 cm and an
oscillating slow mode with a characteristic wave length of 0.22 cm. One can clearly see
in Figure 2 that without reorthonormalization, the slow wave polarization vector compo-
nents (e.g., Bϑ) starts to grow with the fast mode scale and, as a result, one could not
solve for the boundary conditions at the antenna. With reorthonormalization, the numer-
ical solution cannot be distinguished from the analytical solution for the homogeneous
cylinder (Figures 3–4).

Conclusions

It is shown that, in principle, the stiff linear problem can be solved as long as the wave-
lengths involved are in a reasonable scale to each other. However, in the cold plasma
model and for low frequencies the wave length of the slow mode becomes unreasonably
(numerically as well as physically) small and thermal effects have to be added to the
fluid equations. Including friction and pressure forces in the parallel direction alone does
not seem to cure the problem. On the other hand, additional terms in perpendicular
directions will increase the number of modes. This problem is currently under study.
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Fig. 1. The fast mode (krf ≈ im
r cm−1)

obtained numerically (solid line) and the

analytical solution (dashed line) drawn with

negative sign for comparison.
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Fig. 2. The slow mode evolution obtained

numerically without reorthonormalization

(solid line) and the analytical solution

(dashed line). After a couple of oscillations

the numerical solution starts to grow similar

to the fast mode due to finite numerical

precision.
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Perpendicular magnetic field: f = 1MHz, T = 0eV, n = 4, m = 12

Fig. 3. Radial profile of the perpendicular

magnetic magnetic field Re(Bϑ) after

solving for the boundary conditions at

the antenna location, r=53 cm. The

discontinuous behavior of Bϑ and Bz

corresponds to the prescribed (Fourier

decomposed) antenna currents.
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Slow wave: f = 1MHz, T = 0eV, n = 4, m = 12

Fig. 4. Using the orthonormalization al-

gorithm one can actually resolve the

slow mode behavior with wave length

λrs ≈ 0.22cm (detail of Figure 3).
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