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1. Introduction

The reversed shear plasma is a promising candidate for advanced steady-state
tokamak operation. Heat removal by radiation from controlled injection of impurity gases
is a useful technique for mitigating the severe problem of concentrated power loading of
the divertor [1]. In JT-60U reversed shear plasmas, compatibility between the internal
transport barrier (ITB) and a detached divertor plasma has been demonstrated by
radiation enhancement using Ne injection [2]. In order to extend such an operation
toward high confinement, Ar and Ne have been injected into reversed shear plasmas with
high confinement. Radiation enhancement, divertor plasma detachment and impurity
behavior have been investigated.
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the 95% flux surface was 6.1 - 7.1, the elongation was ~ 1.4, triangularity was ~ 0.34, and
the Greenwald density limit (ngy) was 4.3 - 5.1 x 1019 m™3. The stored energy was
controlled with a feedback technique by changing NBI power in arange of 3 - 14 MW.
Waveforms of areversed shear plasmawith Ne injection are shown in Fig. 1.

3. Results and discussion

3.1 Radiation enhancement and ener gy confinement
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the energy confinement was improved. As the Ne X line intensity increased in the main
plasma, the radiation loss power from the divertor increased and a MARFE appeared at
the null point. The outer divertor plasma was detached as indicated by a decrease in the
ion saturation current. Under conditions of divertor plasma detachment and an X-point
MARFE, the Hggp increased from 1.3 to 1.8. Profiles of the electron temperature,
electron density and heat flux at the divertor plates are shown in Fig. 3. After the gas
puff, a cold and dense divertor plasma was produced near the inner and outer strike
points. Although the detached region was narrow (width ~ 1 cm), the maximum heat flux
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1 occurred when the minimum safety factor went through q = 3.
3.3 Impurity behavior

Asshown in Fig. 4 (d), the density profiles of Ne and C were similar to that of the
electrons. Therefore, impurity accumulation was not significant. From the time evolution
of the Ne density profile after Ne injection, it was estimated that the inward velocity and
diffusion coefficient at the ITB were ~ 3 m/s and ~ 0.5 m2/s, respectively. Using a
neoclassical transport calculation code[8], the inward velocity for Ne was estimated to be
~ 2 m/s. Therefore, the experimentally derived inward velocity was consistent with the
calculated one. However, the diffusion coefficient was calculated to be ~ 0.1 m2/s, which
was much smaller than the experimentally derived coefficient.

The Ne X line intensity rolled over around 6.4 s in Fig. 1. However, the time
constant of the intensity decrease was long, and the Ne density could not be controlled by
pumping.

4. Summary

For the reversed shear discharges studied in this paper, in which the electron
temperature at the plasma center was ~ 6 keV, Ar injection resulted in radiation loss
enhancement inside the ITB. With Ne injection, high confinement (Hggp > 2.4,
HHgg(y,2) > 1.6) and high radiation loss (Prog®'@ / Pret > 0.8) were simultaneously
obtained at high densty (ng > 0.7 ngyy). Under conditions of divertor plasma
detachment and an X-point MARFE, the ITB became more pronounced and the Hggp
increased from 1.3 to 1.8. The density profiles of Ne and C were similar to that of the
electrons, and impurity accumulation was not significant. The effective confinement time

for Ne was long, and further enhancement of recycling in the divertor to increase

pumping efficiency was necessary for impurity control.
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