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1. Introduction
  Recently, the internal transport barrier has been found in electron resonance heating (ECRH)
plasma in the compact helical system (CHS), and the steep gradient of the radial electric field is
observed in the core plasma [1].  To study the existence of the transport barrier in the
experimental conditions of helical plasmas, there are two important issues.  The first is the
formation of the electric field domain interface which is associated with the steep gradient of .
This could be investigated quantitatively because the neoclassical transport is found to play the
dominant role in generating the structure of the electric field in helical plasmas [2].  The second
is the study of turbulent transport and neoclassical energy transport so as to understand the
formation of the internal transport barrier.
   In order to analyze the structure of the electric field quantitatively, the self-consistent transport
study is done in which both the electric field bifurcation and suppression of the anomalous
transport are included.  The magnitude and the spatial distribution of the transport reduction are
studied.  The hard transition of  which induces the steep gradient is examined.  The reduction
of the anomalous transport is obtained due to the strong electric field shear at the electric
domain.  The neoclassical diffusivities are found to have a peak near the domain interface where
the electric field vanishes.

2. One-dimensional model transport equations
   In this section, the model equations are explained. The cylindrical coordinate is used and r-

axis is taken in the radial cylindrical plasma.  The total particle flux  is written as

, where  is the anomalous particle diffusivity and  is the radial
neoclassical flux associated with helical-rippled trapped particle. The expression for the
neoclassical flux here is the connection formula and is applicable to both the collisional and

collisionless regimes [3].  The total heat flux  of the species  is expressed as

, where  is the anomalous heat diffusivity and  is the energy flux by the

neoclassical ripple transport, respectively.  The theoretical model for the heat conductivity will

be explained later.  The formula for   are also given [3].  The neoclassical component  of

the diffusion coefficient for the electric field is given in ref. [4].  The anomalous diffusion

coefficient for . is denoted by .
   The temporal equation for the density is

. (1)

The term  represents the particle source.  The equation for the electron temperature is given as

, (2)

where the  denotes the electron collision time and the second term on the right-hand side

represents the heat exchange between electrons and ions.  The term  represents the absorbed
power due to the ECRH heating and its profile is assumed to be proportional to

 for simplicity.  The equation for the ion temperature is

. (3)



The term  represents the absorbed power of ions and its profile is also assumed to be

proportional to .  The temporal equation for the radial electric field in a

nonaxisymmetric system is expressed by [4]

, (4)

where  is the perpendicular dielectric coefficient calculated as .  The

factor  is introduced due to the toroidal effect.

3. Boundary conditions and model for anomalous transport coefficients
   The density, temperature and electric field equations (1)-(4) are solved under the appropriate
boundary conditions.  We fix the boundary condition at the center of the plasma (r=0) such that

, where the prime denotes the radial derivative.  For equation (4), the boundary
condition at the edge (r=a) is the ambipolar condition.  This simplification is employed because
the electric field bifurcation in the core plasma is the main subject of this study.  The boundary
conditions at the edge (r=a) for the density and the temperatures are those in CHS device:

, .  The machine parameters are similar to those of CHS

device, such as , , the toroidal magnetic field , toroidal mode number

 and the poloidal mode number .  We set the safety factor and the helical ripple

coefficient as  and , respectively [1].

The particle source  is set to be , where  is set to be  and the

value of  controls the average density by the particle confinement time.  The value for the

anomalous diffusivity of the particle is chosen .  This value is set to be constant
spatially and temporally.  In this study, we adopt the model for the anomalous heat conductivity
based on the theory of the self-sustained turbulence due to the ballooning mode or the
interchange mode, both driven by the current difffusivity [5,6].  The anomalous transport

coefficient for the temperatures is given as , where .

The factor  is the function of the magnetic shear  and the normalized pressure gradient

, defined by . For the ballooning mode turbulence in the system with a magnetic

well, we employ the anomalous thermal conductivity . The details about the coefficients

 and , and the factor  which stands for the effect of the electric field shear are given
[5] in the ballooning mode turbulence.  In the case of the interchange mode turbulence for the

magnetic hill, the coefficient  has been given by , where

 for the anomalous heat conductivity .  The factor for the

suppression due to the electric field shear is  and , where

 [6].  For the standard parameters in CHS experiment, the numerical factor

 is chosen to be 10.  We use this value of  throughout this paper. The greater one of the two

diffusivities,  is adopted.  The approximation  is employed, where

the validity of this approximation is shown in ref. [7].  In order to set the averaged temperature

of electrons  to be around  and the density to be around , the

absorbed power of electrons is  and the coefficient of the source term  is

 for the choice of above values of anomalous transport coefficients.  The

averaged ion temperature is chosen to be about , where the absorbed power of ions

is fixed at .

4. Results of Analysis
   Using these parameters and boundary conditions given, we analysis the equations (1)-(4).
The stationary solutions of the radial electric field are shown in figure 1(a).  The profiles of the
density and the temperature are shown in figures 1(b) and (c), respectively.  In figure 1(c), the

dashed curve represents Ti and the full curve shows Te.  At the point , the



transition of the radial electric field is found.  The circles in figure 1(a) show the values of the
electric field which satisfy the local ambipolar condition for the calculated profiles of the density
and the temperatures of figure 1(b) and (c).  Multiple solutions are allowed for the local
ambipolar condition in the parameter region examined here.  In the case of figure 1(a), the

electron root ( ) for  is sharply connected to the ion root ( ) with a thin layer between
them.  The transition points should be determined by the Maxwell construction [8].  We
confirm that the Maxwell construction is satisfied in the case of figure 1(a).  The profile of the
derivative of the radial electric field is observed in figure 1(d).  The peak at the transition point

 is found in figure 1(d).  It is found that there is a difference between the half widths at the

half maximum of the inner side ( ) and the outer side ( ) in the profile of the electric field
shear.  The half width of the inner side is wider than that of the outer side due to the
dependence of the neoclassical current on the radial electric field.  The magnitude of the peak of

the electric field shear in this study is twice as that of the case for the constant  [2] which
gives the same half width at the half maximum. The condition for the suppression due to the
electric field shear is satisfied where the width in the profile of the electric field shear is smaller
than 0.007(m)
   The transport barrier is obtained for the both channels of the neoclassical transport and the
anomalous transport, although it is not very clear in both Te and Ti profiles in figure 1(c).  The

value of the anomalous diffusivity shown in figure 2 is that of .  At the transition point, the
suppression is obtained due to the strong electric field shear.  The neoclassical diffusivities of

electrons  and ions  are also shown with the dashed line and the dotted line,
respectively.  When the spatial transition occurs, the electric field goes across zero.  Therefore,

the neoclassical diffusivities have a peak near the surface where the relation  holds,
because they depend on the value of  itself.  In figure 2(b), the sum of the anomalous and
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Figure 1 Radial profiles of (a) the electric field, (b) the density, (c) the electron temperature

(solid line) and the ion temperature (dashed line) and (d) the derivative of the electric field.
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Figure 2 Radial dependence of the diffusivities. The suppression of the anomalous diffusivity

is obtained in figure 2(a) due to the strong electric field shear.

neoclassical  diffusivities is shown.  The case of electrons and the case of ions are obtained
with the dashed line and the dotted line, respectively.  The total suppression can be seen but is
small compared with that of the anomalous diffusivity. This is because the neoclassical

diffusivity has a peak near the radius .

5. Summary and Discussion
   In this paper, the structure of the radial electric field in helical plasmas is theoretically studied.
The analysis is done by use of one-dimensional transport model equations.  Theoretical model
is adopted for the anomalous heat diffusivity and the anomalous diffusion coefficient of the
electric field.  The hard transition with the multiple ambipolar Er is obtained in the structure of

the radial electric field in this study of Te/Ti~2.  The connection from the positive electric field

(electron root) to the negative electric field (ion root) is seen with the steep gradient.  The
reduction of the anomalous diffusivities is obtained at the electric domain due to the strong
electric field shear.  When the value of Te is much higher than the value of Ti  (Te/Ti~10) and

the transition type becomes soft (without multiple ambipolar solution for ), the gradient of the
electric field gets weaker at the electric domain interface.  In that case, no suppression of the
anomalous transport diffusivities is obtained and the transport barrier is not seen.  The

condition for the suppression of the anomalous diffusivities is found as high Ti ( ) in

addition to the low density and high Te.  In CHS device, the spatial transition from the larger

positive electric field to the smaller positive electric field is observed.  Such a spatial transition

does not induce a local peak of , and should be searched for in simulations  The analysis

of the dynamics of the electric field is needed to study the electric pulsation observed in CHS
device [9].  These are left for future studies.
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