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Introduction 
It was found that the fraction of energy lost per ELM depends on the duration of the 

ELM compared to the time taken for the energy to be transported along field lines to the 

divertor plates (see Fig. 1). The energy loss is also affected by collisionality, estimated from 

the pedestal temperature and density[1,2]. It can be shown that a model of ELMs based on 

the coupled kink - ballooning mode instability (k/b mode), combined with the idea of 

transport delay in the SOL region, is in agreement with experimental observations. 
 

Physics model of Type I ELMs  
 Here the excitation of the external kink mode at the plasma edge, coupled with the 

unstable ballooning mode is employed as the principal cause of the Type I ELM event at the 

plasma edge [3,4]. Appearance of Type I ELMs is usually connected with a steep pressure 

gradient at the edge, close to the ballooning limit. On reaching the ballooning 

boundary,α ≡ −2µ
0
q2R ′ p / B2 ≥ αcr (where R is the major radius, q is the safety factor, B is 

the magnetic field, ′ p  is the pressure gradient at the edge and αcr  is some critical value) the 

edge transport increases, effectively tying ′ p  to the marginally stable value. However, no 

large-scale event is anticipated at this point, since the ballooning limit is a “soft” limit. With 

increasing pressure gradient the edge current density will also rise. The build-up of the 

current density near the plasma edge has been shown to decrease the magnetic shear and lead 

to destabilisation of the kink mode [4]. When the edge current j exceeds the threshold of the 

k/b mode stability, j ≥ jcr ≈ αε / q j  (whereε = r / R , j = I / S⊥ , I  is the plasma current, 

S⊥ is the plasma cross section area), it triggers a large-scale hard transport event, which 

destroys a significant fraction of the pedestal area. This happens because (in contrast to the 

ballooning or external kink mode) the coupled kink/peeling-ballooning modes are of larger 

radial extent (typically ~10% of the minor radius), so that a lot of energy would be lost. This 

is interpreted as a Type I event. The instability is sensitive to the location of the closest 

rational surfaces to the plasma in the vacuum region, in particular when the rational surface is 

very close to the plasma (e.g., the rotational transform, ι ≥ 0.47 , as in W7-AS ELMy 

discharges [6]). In the non-linear stage this leads to the development and growth of magnetic 

islands, which can overlap each other and, due to reconnection link the pedestal plasma 

region and divertor plates. The model gives the following estimate for the ELM burst time 

scale, τ ELM , and the ELM affected width,δELM . The fraction of energy stored in the outer part 

of the pedestal is simply assumed proportional to ∆ / a , where ∆  is the pedestal width and a 

is the plasma minor radius. OnlyδELM / ∆  of this fractional energy would be lost during the 

ELM event, so that ∆W / W( )
0

≈ δELM / a . For coupled peeling-ballooning modes, one 

expects the mode width to extend across a number N (related to the toroidal mode number, n, 

which is typically 2-3) of rational surfaces, so that interpreting this as the ELM width, 

δELM ≈ Na / nqs , were q is the safety factor, and s is the magnetic shear. N will depend on the 

proximity to the ballooning stability boundary and the plasma shaping. Finally, the ratio of 



the energy loss per ELM burst, ∆W , to the energy stored in the pedestal area, W , can be 

estimated as:   

∆W / W( )
0

≈ N / nqs          (1) 

For MHD-like modes, such as the peeling-ballooning mode, two time scales are expected to 

be relevant. The first is the Alfven timeτ A = qR / cA , were cA = B / µ
0nmi  is the Alfven 

velocity, and the second is the resistive diffusion time across the narrow layer of width,δELM , 

i.e.τ η = µ0δELM
2

/ η , where η  is the plasma resistivity. In principle, τ ELM  could involve any 

combination of these time-scales, and can be written as  

τ ELM ≈ τASp
 (2) 

whereS = τ η / τ A , is the Lundquist number, and p is a fractional power (1~1/3). A typical 

value of the ELM duration, τ ELM  is a few hundred microseconds. 
  

Model for ELM energy and particle loss 

The duration of an ELM burst and power deposition to the divertor plate varies between 

different machines. This observation and the correlation of the ELM size with pedestal 

collisionality has led to a model for the ELM energy loss which links the ELM size with the 

parallel ion energy losses along the field to the divertor target [1,2]. When an ELM occurs, 

the pedestal plasma loses energy towards the divertor plate for a time τ ELM . The duration of 

the is much shorter than the typical energy equilibration time and, as a consequence, the 

energy is transported to the divertor mainly at the ion sound speed. The electron flux is 

impeded by the formation of a strong electric field, which is set up in the plasma over a few 

µs, when a large population of hot electrons first reaches the target. Consequently, the ELM 

energy drop is determined by the ratio of the ion parallel energy loss time and the ELM time. 

Then the fractional energy loss will be, for example, described by: 

∆W / W = ∆W / W( )0 1+ τ / / / τELM( )−1

   (3) 

where τ / /  is the energy loss time (due to conduction and convection), i.e.: 

              

  

τ
/ /

≈ πqR 1 + ν ∗( ) / cs

 

(4) 

The subscript 0 in (3) indicates the fractional energy loss, that would occur if the parallel 

transport timescale were much faster than the ELM timescale. Here ν∗
 is the electron 

collisionality, R is the major radius, and cs  is the sound speed for the pedestal temperature. 

The formula (1) has been calibrated in [1,2] with DIII-D data and applied to other 

experiments (see red line in Fig. 1). It shows reasonable agreement with experimental data. 

However, this approach has an obvious deficiency: the dependence of ∆W / W( )
0
and on 

plasma parameters remains unknown. Substituting (4, 2) for, τ / /  τ ELM and (1) for ∆W / W( )0  

in expression (3) we can write down a scaling for the energy lost during an ELM:  

∆W / W = cw (N / nsq) 1 + N(1 + cν ν∗
) / Sp β( )−1

   (5) 

where β  is the ratio of thermal to magnetic energy in the pedestal, cw is a fitting constant., In 

Fig. 2 this expression is compared with data from JET (grey squares), ASDEX-Up 

(diamonds) and DIII-D (black squares); it can be seen that, although there is some spread in 

the data, perhaps due to shaping effects, there is a reasonable agreement with the data. Fitting 

parameters p = 1 / 3,   cν =1,   cw = 0.15,  n = 3 were obtained by using a least square 

procedure. According to this model the ELM size and deposition time are dependent on 

collisionality due to the limitation of the transport time along the open magnetic field lines 

(“plugging effect”). This dependence can also result from the reduction of the bootstrap 

current and the peeling mode boundary. The latter can be seen from the stability diagram 

(Fig. 3) where the critical edge current (peeling mode boundary) is shown against the 



pressure gradient at the edge, ′ p . The ELM onset occurs at the corner between the ballooning 

boundary and the peeling boundary. The corner shifts towards smaller values of ′ p  at high 

collisionality, because the critical current increases with ν∗
, jcr ∝ q ′ p / B2 ∝ ν∗

. This happens 

because the safety factor, q, increases when the bootstrap current drops. This confirms that 

the origin of the ELM can be strongly affected by collisionality, not only because of the 

lowering of the bootstrap current at the edge but also due to the increase of the peeling 

boundary at higher collisionality. 
 

Result of ELMs simulation and conclusion 
To confirm that cyclic ELM-events can in principle result from the model the ASTRA 

transport code was adapted using a simplified analytic stability criterion for the peeling-

ballooning mode [3]. When total edge current j ≥ jcr ≈ αε / q j , then the radial transport 

coefficient increases by a large amount within a region of radial widthδELM at the plasma 

edge. We estimate χ ⊥  as χ ⊥ ≈ χ ⊥
solτ

/ /

sol
/ τ

/ /
≈ Lsol / LELM( )χ⊥

sol Te
ped

/ Te
sol( )1/ 2

, based on the 

experimental observation that the width of the power distribution at the plate varies by less 

than a factor 2 during and between ELMs. Here χ ⊥
sol

 is the diffusion coefficient in the SOL, 

Te
ped

 and Te
sol

 are electron temperatures during and between ELM. Lsol / LELM  characterise the 

relative change of the connection length due to the magnetic reconnection. Convective losses 

along the magnetic field lines dominate during the ELM. At t ≥ τ ELM  edge current decreases 

and the plasma becomes stable to both ballooning and peeling modes. The radial transport 

drops to neoclassical values and convective losses are no longer active. As a result the 

pedestal slowly recovers and the plasma again crosses the stability boundary. Clearly in this 

case a cycle occures, and we see in Fig. 4-6 the evolution of various equilibrium quantities 

over a couple of ELM periods. The time scale for ASDEX Up parameters for the ELM is 

τ ELM ≈ 400µ sec  and the time between ELMs ≈ 10msec . Here we assume that the turbulence 

can affect current evolution, increasing the resistivity at the plasma edge. The energy loss per 

ELM is estimated as 12 ÷18kJ , comparable with the experiment data. The transport 

coefficient χ ⊥  is of the order 1 ÷1.5 m2
/ sec . and we take parameter N ≈ 5 (see1). The 

qualitative results from the ASTRA modelling provide some confidence in the model; 

however it is not yet sufficient to have a good predictive capability.  

The main results of this paper are as follows. A model of energy and particle loss has 

been incorporated into the peeling-ballooning mode ELM model. Simulation of the transient 

ELM events in the transport code (ASTRA) confirms that cyclic ELM events can in principle 

result from the model. The competition between different timescales (plasma diffusion time 

and current evolution time) shows agreement with the experimental time scales only if an 

anomalous electron resistivity at the edge is taken into account [5]. The model indicates some 

possible ways to control ELMs. The most obvious is lowering the edge current through 

negative current drive. Large Type I ELMs might be avoided if the collisionality is 

sufficiently high and the bootstrap current is too low to reach the peeling mode boundary. If 

the heating power is low so that the pressure gradient is well below the ballooning limit, or 

the plasma has access to second stability, then the peeling and ballooning modes are not 

coupled. Applied to stellarator conditions the model predicts lower value of energy losses 

than in a tokamak due to the longer connection length L and the lower value of the bootstrap 

current at the edge [6].  
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Fig.1 ELM energy loss for DIII-D, JET and 

ASDEX versus τ//, calculated for the pedestal 

temperature. 
 

Fig. 2 Scaling prediction of fractional energy loss 

per ELM vs. data from JET, ASDEX Up and 

DIII-D. 
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Fig.3 Stability diagram for a peeling-ballooning 

mode: edge normalised current vs. pressure 

gradient at the edge, ′ p . 

Fig. 4 Time evolution of the critical (blue) and 

total (red) currents at the edge; pedestal Te (red) 

and energy (green) during ELM cycle. ASDEX  
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Fig. 5 Time evolution of the critical (blue) and 

total (red dashed) currents at the edge; pedestal 

electron temperature Te (green)  

. Fig. 6 Time evolution of the stored pedestal energy 

∆Wped  (red dashed) and total pressure (blue) at 

the edge; 

 


