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INTRODUCTION

The magnetic moment, µ0 = V⊥
2/2B, of fast ions confined in conventional axisymmetric

tokamaks is known to be well conserved due to a relatively small adiabaticity parameter,
� (ratio of ion gyro-radius, ρL, to the gradient scale length of the magnetic field, R). For
energetic ions confined in standard tokamaks we have � < A-3/2q-1 << 0.1 [1] with A denoting
the plasma aspect ratio and q the safety factor. However, for NBI ions in spherical torus
(ST), where typically is A < 1.5 [2] at the plasma periphery, the adiabaticity parameter is
greater than 0.1 and hence the magnetic moment of these ions is not conserved.

NON-ADIABATIC VARIATIONS OF MAGNETIC MOMENT

Following [3] we distinguish between adiabatic and non-adiabatic variations of the
magnetic moment, which, in the case of arbitrary � , are given by
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where ϑ is the gyro phase, Vll and V⊥ are the particle velocity components parallel and
perpendicular to B, and r defines the position of particle. Taking into account the smallness
of Mk and Nk , 0/ /( )k B k BN Mω µ ω� � ! , and neglecting the interaction of gyro oscillations

given by exp(ikϑ) and fast oscillations of Mk, Nk one obtains the corrected expression for the
magnetic moment in the adiabatic approximation
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The term aδµ compensates gyro-oscillations of µ0 and is purely oscillative with the gyro-

averaged component being zero. Thus the nonadiabatic variation, nδµ , per time interval

τb>∆t=2πn/ωB (n - integer) is given by 0n

t

dtδµ µ
∆
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. Typical time variations of µ0 for fast

ions are illustrated in Figs. 1a, 1b with also the complete orbit of a 40 keV circulating
deuteron in NSTX (β = 40%, I/B=1MA/0.3T) shown (Fig. 1c). Starting point is at R = 0.55m,
Z = 0 with 0, 0, / 1R Z V Vϕ= < =

� �
. The magnitude of adiabatic gyro oscillations of µ0 is of

order 100%; rather strong nonadiabatic variations 0
0 10%nδµ µ � are observed when the

particle passes the minimum B along the orbit (at the outboard part of the midplane). These
variations occur during a short time period B bt τ τ∆ � � as demonstrated by the time behavior

of the corrected magnetic moment 0 1µ µ µ= + . Non-regularity of the nδµ -variations over
several bounce times indicates stochastic behavior. Note that the particle energy E and the
toroidal canonical momentum Pϕ are conserved with high accuracy
( 10/ / 10E E P Pϕ ϕ

−∆ ∆ ≤� ).



On account of the purely oscillative nature of aδµ the nonadiabatic variation of µ on

time scales bt τ∆ ≥ corresponds to 0 1 0
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Role of resonances

Because of the local nature of nδµ the nonadiabatic variations of µ0 during bt τ∆ ! are

very sensitive to the resonances between the gyro motion and bounce oscillations,
0, integerB bl lω ω− = = . (3)

Ions with ( ),a
l E Pϕµ µ≈ , where µl is the value of magnetic moment corresponding to the

resonant condition, Eq. (3), can in bt τ∆ ! accumulate the n
bδµ ‘s experienced per each

bounce resulting in superbanana oscillations with amplitudes n n
sb bδµ δµ! and characteristic

superbanana periods sb bτ τ! . This is seen in Fig. 2a where the superbanana oscillation of
0 aµ µ≅ is displayed for an 80 keV deuteron starting at R = 1 m, Z = 0 in NSTX (β = 40%,

I/B=1MA/0.3T) with 0, 0, / 0.975R Z V Vϕ= < =" " . The value / 0.975V Vϕ = results in the

superbanana oscillation of maximum amplitude (in the vicinity 10µ µ≤ ). As evident from Fig.

2b, the orbit starting with / 0.96V Vϕ = corresponds to a near resonant one ( 10µ µ≅ ).

Decreasing /V Vϕ to 0.93 yields the superbanana orbit of maximum magnitude in the vicinity

10µ µ≥ . Finally, further decrease of /V Vϕ results in leaving the resonant range. At

/ 0.925V Vϕ = we see a typical non-resonant orbit with relatively small variations nδµ ,

Fig.2c.

Superbanana (super-adiabatic) variations ( cr!" ! )

The diversity of bounce averaged superbanana oscillations for 0.925 / 0.975V Vϕ≤ ≤
for 80 keV deuterons in NSTX (β = 40%) is shown in Fig. 2d. The range
0.93 / 0.975V Vϕ≤ ≤ corresponds to a class of superbananas with their maximum amplitude

in the vicinity of l=10 and indicates that the fraction of resonant particles is about 4%. Fig. 3
displays the superbanana orbits corresponding to two neighbouring resonance levels (l=11
and l=12) for 80 keV deuterons in NSTX (β = 23%). Accounting for the difference between
values /V Vϕ associated with neighboring resonances (about 0.1) and considering the

fractions of resonant particles, fr, which are ∼ 0.03 and ∼ 0.02 for l=11 and l=12, we estimate
the fraction of all resonant particles to be ∼ (20-30)%. Regularity of the superbanana
oscillations indicates the existence of a new adiabatic invariant (superadiabatic behaviour)

n
aµ µ δµ= + , (4)

which, however, only occurs if cr! !" , i.e. when the magnitudes of superbanana oscillations
n
sbδµ are less then the distance between the neighboring resonant levels, ( )1l lµ µ µ+∆ = − .

Transition to stochasticity ( cr! !# )

If the condition for overlapping of resonances [4],

( ) 1, n
cr sb cr l lδµ µ µ µ+= ∆ ≡ −! ! !# , (5)



is satisfied, µ is no longer an invariant and transition to stochasticity will take place. This is
possible for co-going NBI ions passing the outer part (R∼ 1.5-1.6m) of NSTX. A typical
stochastic orbit of an 80 keV deuteron in NSTX is given in Fig. 4 with the non-adiabaticity
induced radial drifts of the guiding centre of the bounce orbit being of the order of the ρL.

NON-ADIABATICITY INDUCED TRANSPORT

In the phase space domain corresponding to the stochastic regime ( cr! !� ) non-

adiabaticity will result in strong pitch angle diffusion at a rate ( )22n n
st b bD µ µ µ ω= ∆ that, for

NSTX-like parameters ( 6 110 ,b sω −≅ 2 1/ 10 10n
bµ µ − −∆ −� ), gives ( )2 2 4 110 10n

stD sµ −≅ −

ν ⊥
	 where ν⊥ ( ) 11 3 s−−� is the rate of Coulomb pitch angle scattering. This scattering will

result in enhanced radial diffusion. Further, Fig. 5 demonstrates the collisionless
transformation of a barely trapped 3.5 MeV alpha in DTST (I/B=10MA/2T) into a marginally
circulating one, again associated with a radial shift of ∼ ∆rb.

In the super-adiabatic regime ( cr! !
 ) non-adiabaticity will give rise to additional pitch

angle diffusion with the rate ( )22 2/( )n n
coll sb r rD fµ ν µ µ ξ⊥= ∆ ∆ , where ∆ξr is the width of the

resonance region in Vll/V. For NBI ions in NSTX ( / 0.05 0.1n
sbµ µ∆ −� , fr ∼ 0.2-0.3, ∆ξr ∼

∆(Vϕ/V) ∼ 0.02-0.03) this rate exceeds ν ⊥ . Due to the dependence of ωb on E the slowing

down can result in radial convection of resonant orbits in the super-adiabatic regime, cr! !
 .

Fig. 6 indicates a strong outward shift (∆R ≅ 10 cm) of the resonance orbit of a 3.5 MeV alpha
upon the energy decrease ∆E = 50 keV in DTST (I/B=10MA/2T). Hence non-adiabaticity
may result as well in rather strong radial convection due to slowing down (at the rate

/( )s sR E a Eν ν∆ ∆ ≥ ).

CONCLUSIONS

Non-conservation of the magnetic moment is expected to significantly affect the
confinement of fast ions in spherical tori. Pronounced non-adiabaticity, cr! !� , will result in

strong collisionless pitch angle scattering and also in the collisionless transformation of
trapped orbits into circulating ones as well as vice versa. In the case of weak non-adiabaticity,

cr! !" , non-conservation of µ may result in enhanced collisional radial diffusion and

convection of fast ions gyrating resonantly with bounce oscillations. We note that the non-
adiabaticity effects described may be modified by magnetic field ripples [5, 6] not accounted
here.
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Fig.1 µ variations and gyro orbit of 40 keV deuteron in NSTX (β=40%, I/B=1MA/0.3T)

Fig.2 Oscillations of <µ > of 80 keV deuterons in the vicinity of l=10 resonance level vs Vϕ/V

Fig.3 Variations of <µ > for l=11, 12 in Fig.4 Nonadiabaticity induced radial drift of deuteron
NSTX (β=23%, I/B=1MA/0.3T) in NSTX (β=40%, I/B=1MA/0.3T)

Fig.5 Collisionless orbit transformation of 3.5 alphas in DTST Fig. 6 Outward shift of resonance
(I/B=10MA/2T) level of 3.5 alphas in DTST


