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1. INTRODUCTION
In [1] the genera theory of a new multiple timescale (MTS) derivative expansion
scheme has been presented and applied both to the dimensionless Fokker-Planck and to

Maxwell’ s equations. Within kinetic theory, the four species dependent timescales are those

of Larmor gyration Q', the transit time «,', the collision time v.' and the classical

diffusion time r

acd?

which can be written in the standardized form 7,,=1,,0,", where
o0, =6,1Q,. The application of the MTS approach to the dimensionless Fokker-Planck

equation leads to a separate kinetic equation for each order in the expansion parameter J,, .

2. BASIC EQUATIONS

The laboratory frame representation of the kinetic equations is appropriate for deriving
the transport equations via velocity moments, i.e. for the analysis of the convective transport.
However, for the investigation of the diffusive transport, i.e. for the calculation of the
transport coefficients depending only on the random velocity, we prefer to represent the
kinetic equations in the convected velocity reference (CVR) frame. For that we have to
rewrite the hierarchy of Fokker-Planck equations (Egs. (8) in Ref. [1]).

Replacing the velocity v by the random velocity € =V -1, , the dimensionless Fokker-
Planck equation in the CVR frame reads [ 3]
5{3:” +6D]]fa]+{aa(lfa +ExB)-0,815, —50%}%5 =3°A,C,(f,.1,), @)
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with the definitions

Application of the MTS approach leads to the following zeroth-order and first-order
equations in the CVR frame:
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where F,=a,E,+0,,xB, and Fl::Ual><B0+[—ﬂ] (a,, l+U£,O><Bl). Using the

zeroth-order and first-order two-fluid transport equations derived in the same way as in [1],

the forces F,, and F,, can be eliminated finally yielding

50 o,lexB,)m,f,,=0 )
f 0 3
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with the solution of the zeroth-order equation, EqQ. (4), simply given by
faO (5(” E’tao ’talitaz) = nao (ﬂT ) eXp( / ) ) (6)

3. FIRST-ORDER SOLUTION f,,
In order to solve the first-order equation, Eq. (5), we assume that f,, isonly slightly
deviating from f,, and engage the ansatz
for = @, (R Et)f 0, (7)
where @, denotes a small correction. Thus we arrive at the first-order Fokker-Planck
equation of the form
=2

-0, (6xB,)m,o, =(TC——2J6DD(|nTao)+iateaom ©)

a0 a0

with e, = %(SL,0 +S7)- %tr (S,,)!. Thisequation isan inhomogeneous, linear first-order
differential equation for ®, . The conditions for the existence of a solution are b IOT,, =0
and b[&,, b =0, with b =B,/B, , B, =‘I§O‘ . For solving Eq. (8) we express @, as

—

@, (%,Et)=Pm + ™ =" + g, +E [V, [E 9)
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where ®"" and @™ refer to the homogeneous and inhomogeneous sol utions, respectively.
Evidently, the non-trivial homogeneous solution is GJZ"”’ = F(c“,c;Y(,t) with ¢, = b [ and

c= |6| , Where F isan arbitrary function which may be represented as a double series

QX" =F =3 b7 qre”. (10)
For U, and V, wefound
I RN
2
U, = 2e| S=2|BxT, and v, = T2 | (et —eZ) el 263 [.a1)
BOTaO TaO 2 BOTaO 2
-2e> 2e 0

A local Cartesian coordinate system has been chosen for representing V,, in which the xz-

axisis aligned along the zeroth-order magnetic field I_3>0 . Thus we found the general solution

for the first-order distribution function f,, to be
F0 = (7T, ) %2 [ZZ b?, cre" +& W, +C 1V, m} expl-&2/T,,) (12)

where the coefficients by, , are consistent with the requirement I cf,dc=0.
4. HEAT FLUX AND VISCOSITY
Introducing EQ. (12) into the definition for the dimensionless first-order heat flux,

Qo = %fczé f,,0C, we arrive at

- naTaj+k+2 2(j +k)+5[! R _ Tors _ 50n.T
qalzzz 201'-23 {[ Divks3 ] j+1,2k+(1+k+3)! 70b2j+1,2k+1}b +§ Thoo

=0 k=0

b x[T
B, “ (13)

with the dimensional representation of the second term (originating from @®'™)

q™ =k, [6x0T,,) with «, = gamn—ga" (14)
a=<a0

where the over-tilde denotes the dimensional physical quantities. The thermal conductivities

Kk, and 0O, related to the temperature gradients Bxﬁfao and ﬁmfao, are identical to

Braginskii’s corresponding coefficients x5 and «7[2] in the collisionless limit.

From the first-order viscosity tensor definition 1, = J' cocf,de Ig.[cz f,,dcwefind
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Here the dimensional representation of the second term (originating from ®!™) is
&, S(eh-a) -2
=g, | (gh-82) & 2| with g =Tkl (16)
2 Q.0
22 262 0

The viscosity coefficient 77, is the collisionless limit of Braginskii’s [2] corresponding
viscosity coefficients 77, and 275 . The collisionless limits of Braginskii's #; and n; are

zero; accordingly, there is no corresponding contribution to our M1".

5. SUMMARY
Based on the application of a M TS approach to the Fokker-Planck equation and to Maxwell’s
equations, the particle heat flux and the viscosity tensor were derived. Braginskii’s parallel

heat flux related to ,T, is undefined in the collisionless limit, as is the collisionless limit of
Braginskii’ s viscosity related to €. These contributions to the heat flux and to the viscosity

tensor are replaced in our approach by the contributions originating from ®™" . Apart from

these contributions, the heat flux and the viscosity tensor obtained here are equivalent to the

collisionless limits of Braginskii’ s results.
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