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1. INTRODUCTION

In [1] the general theory of a new multiple timescale (MTS) derivative expansion

scheme has been presented and applied both to the dimensionless Fokker-Planck and to

Maxwell’s equations. Within kinetic theory, the four species dependent timescales are those

of Larmor gyration 1−Ωα , the transit time 1−
αω , the collision time 1−

αν and the classical

diffusion time cdατ , which can be written in the standardized form 0
n

nα α ατ τ δ −= , where

ααα ωδ Ω= / . The application of the MTS approach to the dimensionless Fokker-Planck

equation leads to a separate kinetic equation for each order in the expansion parameter αδ .

2. BASIC EQUATIONS

The laboratory frame representation of the kinetic equations is appropriate for deriving

the transport equations via velocity moments, i.e. for the analysis of the convective transport.

However, for the investigation of the diffusive transport, i.e. for the calculation of the

transport coefficients depending only on the random velocity, we prefer to represent the

kinetic equations in the convected velocity reference (CVR) frame. For that we have to

rewrite the hierarchy of Fokker-Planck equations (Eqs. (8) in Ref. [1]).

Replacing the velocity v
�

by the random velocity αuvc
���

−= , the dimensionless Fokker-

Planck equation in the CVR frame reads [3]
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with the definitions
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Application of the MTS approach leads to the following zeroth-order and first-order

equations in the CVR frame:
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where 0000 : BuEaF
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δ
. Using the

zeroth-order and first-order two-fluid transport equations derived in the same way as in [1],

the forces 0αF# and 1αF# can be eliminated finally yielding
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with the solution of the zeroth-order equation, Eq. (4), simply given by
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3. FIRST-ORDER SOLUTION 1αf

In order to solve the first-order equation, Eq. (5), we assume that 1αf is only slightly

deviating from 0αf and engage the ansatz

( ) 01 ,, ααα ftcxf ##Φ= , (7)

where αΦ denotes a small correction. Thus we arrive at the first-order Fokker-Planck

equation of the form
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with ( ) ( ) ISSSe 0000 3

1

2

1
: αααα trT −+= . This equation is an inhomogeneous, linear first-order

differential equation for αΦ . The conditions for the existence of a solution are 00 =∇⋅ αTb#
and 00 =⋅⋅ bb ## αe , with 00 BBb ## = , 00 BB #= . For solving Eq. (8) we express αΦ as
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where hom
αΦ and inh

αΦ refer to the homogeneous and inhomogeneous solutions, respectively.

Evidently, the non-trivial homogeneous solution is ( )txccF ,;,||
hom *=Φα with cbc ++ ⋅=|| and

cc += , where F is an arbitrary function which may be represented as a double series
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For αU+ and αV we found
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A local Cartesian coordinate system has been chosen for representing αV , in which the x3-

axis is aligned along the zeroth-order magnetic field 0B+ . Thus we found the general solution

for the first-order distribution function 1αf to be
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where the coefficients α
nmb , are consistent with the requirement < = 01 cdfc == α .

4. HEAT FLUX AND VISCOSITY

Introducing Eq. (12) into the definition for the dimensionless first-order heat flux,>
= cdfccq ??? 1

2
1 2

1
αα , we arrive at
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with the dimensional representation of the second term (originating from inh
αΦ )

( )0
inh ~~~

ααα κ Tbq ∇×= ++ with
0

00

~~

2

5

αα

ααα
α

σκ
Ω

=
m

Tn
, (14)

where the over-tilde denotes the dimensional physical quantities. The thermal conductivities

ακ and 0 , related to the temperature gradients 0

~~
αTb ∇×+ and 0

~~
αT⊥∇ , are identical to

Braginskii’s corresponding coefficients ακ ∧ and ακ ⊥ [2] in the collisionless limit.

From the first-order viscosity tensor definition 2
1 1 13

c c f dc c f dcα α αΠ = ⊗ −
J JIK L L L L

we find
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Here the dimensional representation of the second term (originating from ) is
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The viscosity coefficient αη is the collisionless limit of Braginskii’s [2] corresponding

viscosity coefficients αη 4 and αη32 . The collisionless limits of Braginskii’s αη1 and αη 2 are

zero; accordingly, there is no corresponding contribution to our inh
~

αΠf .

5. SUMMARY

Based on the application of a MTS approach to the Fokker-Planck equation and to Maxwell’s

equations, the particle heat flux and the viscosity tensor were derived. Braginskii’s parallel

heat flux related to ||Tα∇g g is undefined in the collisionless limit, as is the collisionless limit of

Braginskii’s viscosity related to 33~
αe . These contributions to the heat flux and to the viscosity

tensor are replaced in our approach by the contributions originating from hom
αΦ . Apart from

these contributions, the heat flux and the viscosity tensor obtained here are equivalent to the

collisionless limits of Braginskii’s results.
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