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1. Introduction

A Monte-Carlo (MC) method to solve the drift kinetic equation using the stochastic

mapping technique has been proposed in Ref. [1]. A numerical implementation of this

approach has been presented in Ref. [2]. However, two major simplifications were made,

namely the use of a simplified stellarator magnetic field configuration allowing for only

one minimum value of the magnetic field module within one toroidal field period and

the neglect of the quasi-static radial electric field. In the present report, a more realistic

stellarator field, namely that of W7-AS [3], is considered. In addition, also the effect of

the radial electric field is implemented.

2. Mapping technique

Within the stochastic mapping approach, test particle orbits are traced only on those

surfaces where the magnetic field module reaches a minimum along the magnetic field

line, the minimum-B cuts. The full test particle orbit integration needed for the MC

procedure is replaced by mapping of particle positions and velocities between minimum-

B cuts. In this way, the integration procedure is speeded up, because the information

about the respective particle dynamics is precomputed and stored. In a general case

the topology of minimum-B cuts in realistic magnetic field geometry is rather complex.

They have to be subdivided into a few regions with simpler topology (see Figs. 1 and 2).

The convenient numbering of these regions can be performed with the help of a 2-D

vector index m = (n, m), where n numbers magnetic field periods and m numbers the

cuts within a single period, ϕn < ϕ < ϕn+1, where ϕ is the toroidal angle. The problem

is simplified by employing a local set of magnetic coordinates xi (see [2,4]) in each

magnetic field period. Two of these coordinates satisfy the magnetic differential equation,

B·∇xi = 0, i = 1, 2, where B is the magnetic field, and the boundary conditions on the

“reference cuts” ϕ = ϕn, x1 = R, x2 = Z, where (R, ϕ, Z) are cylindrical coordinates.

The third coordinate is x3 = ϕ−ϕ(n). Together with the period index n (discrete toroidal

coordinate) these coordinates describe the particle position in space uniquely. When a

test particle travels to one of the neighboring periods the change of the local coordinate
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system is accomplished with high accuracy with the help of the interpolated mapping

procedure using bi-cubic splines.

Introducing the coordinates u of footprints of test particle orbits on a minimum-B cut m,

where u1 = x1, u2 = x2, u3 = p, and u4 = λ, yields a unique set of footprint coordinates,

(m,u). Without collisions, each new footprint of a drift orbit, (m′,u′), is determined by

the Poincaré map, m′ = Mm(u), u′i = U i
m(u), where Mm(u) gives the index of the next

cut to be passed by the drift orbit. This can be one of two neighboring cuts, then such

particle is called “passing”, or the same cut for a “trapped” one. The spatial components

of the map can be expressed in terms of the particle displacement from the magnetic

field line ∆x1,2
m (u) with, U i

m(u) = ui +∆xi
m(u). The displacements are well represented

by expansion over the normalized momentum module ρB = p/(mωc), the radial electric

field amplitude ρE = 2eΦ′(ψ)/(pωc), and its derivative, ρE = 2eΦ′′(ψ)/(pωc), as
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where Φ is the electric potential and ψ is a flux surface label. Such an expansion reduces

the problem of the map storage from 4-D to 3-D (only the λ dependence in velocity

space remains non-trivial, see Fig. 3) and permits the use of different electric field profiles

without reloading the orbits. The components of the map in the velocity space U3
m and

U4
m need no storage because this mapping is performed with the help of conservation of

energy and magnetic moment.

The account of diffusion in velocity space (Coulomb collisions) is realized by adding

small random displacements δum(u) to the regular map, m′ = Mm(u + δum(u)),

u′i = U i
m(u + δum(u)) thus making it stochastic. In the long-mean-free-path regime

being of interest here, only the variance and deviation of these random displacements

have to fulfil the relations 〈δui〉 = F i
m(u) and 〈δuiδuj〉 = 2D̄ij

m(u), where D̄ij
m and F i

m are

orbit integrated components of the diffusion tensor and the drag force [1,2]. In case of

Coulomb collisions the dependence of these quantities on u3 = p can also be factorized,

and the main care has to be taken to reconstruct the dependence on the pitch (Fig. 4).

3. Results of benchmarking

In the present report the stochastic mapping technique has been benchmarked against

the conventional MC method in regimes with and without electric field and against the

field-line integration method [5] for evaluating transport coefficients in 1/ν regime. For

both MC procedures a simplified Lorentz collision operator describing only pitch-angle

scattering has been used. The long-mean-free-path regime has been considered with



Lc/l = 0.003 where Lc = 2πR/ι and l = v/ν⊥ are the connection length and the mean-

free path, resp.. Here ν⊥ is a perpendicular scattering frequency. The computed diffu-

sion coefficient has been normalized to the mono-energetic plateau diffusion coefficient,

Dplateau
⊥ = πρ2

Lv/(16ιR), where ρL is the gyro-radius. The radial electric field profile was

chosen to keep the electric rotation frequency ωE = c(dΦ/dr)/(rB) close to constant

along the small radius r. For benchmarking with the field line integration technique the

“effective ripple amplitude” ε
3/2
eff has been calculated. For an arbitrary stellarator, this

quantity is substituted for the helical ripple amplitude εh in formulas for 1/ν transport

coefficients for the standard stellarator. The results stay in good agreement (Figs. 5, 6).

Fig. 1. Number of cuts within the magnetic field

period in local magnetic coordinates xi.

Fig. 2. The geometry of minimum-B cuts.
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Fig. 3. Particle displacements ∆xi
m as functions

of the pitch λ.

Fig. 4. Variance of the pitch per bounce time,

〈δλ2〉 = 2D̄λλ
m , as a function of the pitch λ.



Fig. 5. Diffusion coefficient D⊥ = 〈∆r2/(2t)〉 in
units of the plateau coefficient versus relaxation

time t for different values of the radial electric

field. Starting point x1 = 204 cm, x2 =-5.1 cm.

Fig. 6. Effective ripple amplitude ε
3/2
eff as given

by mapping (solid) and field line integration

(dashed) techniques, respectively.

4. Discussion

The stochastic mapping technique has been developed and realized in a numerical code

for the solution of the drift kinetic equation in a stellarator with arbitrary geometry and

topology of the magnetic field, allowing for islands and ergodic magnetic field layers.

The regimes with radial electric field in case of a simple magnetic field topology are

well reproduced as compared to the conventional MC method. On the other hand,

the mapping procedure is significantly faster (160 times in the considered case). Note

that the speed of the mapping solver is practically independent of the complexity and

computational cost of the magnetic field, therefore, the gain will be even more significant

for configurations with a broad magnetic field spectrum. Since the preloading procedure

is relatively time consuming, the method is most effective in a case when ”global”

computations of the particle distribution function are needed, e.g. for the studies of

kinetic effects of rf-heating, or for the computation of profiles of transport coefficients

for fixed magnetic configurations.
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