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Introduction

An effective ripple, � � � , obtained from neoclassical transport computations in the
� 	 �

regime is
often used for evaluating the confinement properties of stellarator systems. In the

� 	 �
regime,

the � � � value enters the expression for transport coefficients as a factor � � � �� � . It can be effec-
tively used as a target function within codes for stellarator optimization. There exist different
possibilities for a representation of the � � � parameter and, in addition, there are problems to
determine the set of quantities which is sufficient for computing � � � in Boozer coordinates. In
particular, these points are important for transport codes which evaluate the quantity � � � and
for subsequent computation of particle (and heat) fluxes or diffusion coefficients.

General expression for � � �
For an arbitrary stellarator magnetic field, the particle flux density � � in the

� 	 �
transport

regime is linked with the conventional stellarator flux density � � � � � � �� through the relation [1]

� � ! � � � �� �� � � �# � � � � � � �� $ � � � � � � �� ! ' ) *+ , � � � . �0 1 �3� 4 � � � � �# 67 8 9 ; = ? @ ; B � �D E ; G IJ K L J K
L N O (1)

Here, � � � and � # are the effective ripple and the helical ripple along the magnetic field line,
respectively,

J K ! J K E R $ S G
is the Maxwellian distribution,

R
is the magnetic surface label,

and
4

is the major radius of the torus. All other quantities are the same as in Ref.[1]. The
derivative of

J K
is taken with respect to a formal radius of the magnetic surface, N , which

corresponds to the definition

L J K
L N ! L J K

L R T V W R V Y $ T V W R V Y ! [ \ ^3 ` a 6 ce
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The quantity � � � is obtained in [1] for an arbitrary stellarator magnetic field taking into account
all classes of trapped particles. For convenience in the further discussion, it is presented as� � � �� � ! n� � � �� � 	 T V W R V Y � $ (3)

with
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� � � n� ��n� � $ (4)
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Here � � ! E � � E � � W G � G � W R 	 V W R V is the geodesic curvature of a magnetic field line with
the unit vector

� ! � 	 i
. The quantity � � � is calculated by integration over the magnetic

field line length,
g
, over the sufficiently large interval � �   � , and by integration over the

perpendicular adiabatic invariant of trapped particles, ¢ £ , by means of the variable
� �

. Here,i � ¤ ¥ � �K ¦ � and
i � ¤ ¥ � �K ¤ ¨ are the minimum and maximum values of

i
within the interval � �   � . The

quantities
g � K ¦ � �� and

g � K ¤ ¨ �� within the sum over ¬ in (5) correspond to the turning points of
trapped particles. For a magnetic field originally available in real space coordinates, there is
no necessity in a field transformation to magnetic coordinates. In this case, formulas (3) - (5)
must be supplemented with the magnetic field line equations as well as with the equations for
the vector ­ ® W R

(see Ref.[2]) f ° ¦f g ! ' �i L i �L ² ¦ ° � $ (6)

where
i � are the contravariant components of � in a real-space coordinates ² ¦

, and
° � !L R 	 L ² � are the covariant components of ­ .

Normalized diffusion coefficients

An effective ripple can also be determined in a form without the formal magnetic surface radius
given by (2). This can be done by scaling the

� 	 �
flux with the use of some other independent

diffusion flux. Transport fluxes at low collision frequencies are linked to the charged particle
drift motion. Therefore, for the correct comparison of these fluxes, one has to use a normaliza-
tion flux which takes into account the plasma geometry but at the same time is independent of
the drift motion. The usual ’classical’ diffusive flux for heat or particles across the magnetic
field is the most appropriate one for such a normalization. For an arbitrary magnetic field the
’classical’ particle diffusion flux has the following form [3]

� £ ! � � � � � � �£ 	 ² $ � � � � � � �£ ! I ¶ �· £ i �8 f ¸f R T V W R V Y $ (7)

with
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Taking (7) and the
� 	 �

particle flux in the form (1), one can obtain� �� £ ! � � � �� � Â� � � �# � � � � � � ��� � � � � � �£ $ � � � �� � Â ! ² � � � �� � ! » i �8 ¼ � W Ri � � ¾ ¿ ? � n� � � �� � O (9)

The ratio � � � � � � �� 	 � � � � � � �£ is independent of the formal radius since the derivative T V W R V Y ÅÅ Æenters the numerator as well as the denominator when taking into account (2). Therefore, the
effect of the magnetic field geometry on the

� 	 �
transport coefficients manifests itself through

the factor � � � �� � Â only. The ratio of � � � �� � Â over � � � �� � is given by the factor ² which turns out to be
rather close to unity. For example, for the magnetic configurations considered in [1] (orig-
inal Helias, quasi-helically symmetric stellarator, torsatron U-3M) this value is in the limits
0.8 � 1.0. This is valid for both,

i 8
defined as T i Y or as

� 	 T � 	 i Y .



Presentation in Boozer coordinates

To consider transport processes in configurations with finite beta equilibria, the Boozer mag-
netic coordinates are often used. The contravariant and covariant representations of � are [4]� ! W R � W Ç ' È W R � W Ê ! � W Ê Ì � W Ç Ì Î Ï W R O (10)

Here Ç and Ê are the Boozer angle-like magnetic coordinates, ¶ � E R G 	 p
and ¶ � E R G 	 p

are the
poloidal (external with respect to the magnetic surface) and toroidal electric currents, È is the
rotational transform in units of

p ,
, and Ò ! p , R

is the toroidal magnetic flux. The well known
expressions for the metric tensor determinant and the field line elements are) Ó ! �W R � W Ç � W Ê ! � Ì È �i � $ f gi ! ) Ó f Ê $ Ç ! Ç

8
Ì È Ê O (11)

With the use of (10), one gets the quantity V W R V � � as

V W R V � � ! �i � E � � W i G � W R ! �� Ì È � � � L i
L Ê ' � L i

L Ç � O (12)

With the Boozer spectrum of
i

, with the quantities � and
�
, and with expressions (11) for

) Ó
and (12) for V W R V � � , the parameter n� � � �� � in (3) can be computed. So, the quantity n� � � �� � represents
that part of � � � �� � for which the magnetic field confinement properties are determined through the
Boozer spectrum of

i
and through � and

�
. It follows from (3) that for a full account of the

effect of plasma geometry on � � � �� � the quantity V W R V is also essential. For that purpose, one
can directly use the Boozer spectrum for V W R V . Alternatively, one can use the relation with the
normal to the magnetic surface, Ô ,

W R ! �) Ó Ô $ Ô ! L ÖL Ç � L ÖL Ê (13)

and make use of the Boozer spectra for the coordinates of a magnetic surface. At last, as it
follows from (2) and from the equivalence of averages over the magnetic field line and over the
volume between two neighboring magnetic surfaces, T V W R V Y is given as

T V W R V Y ! × � f Ùf R � ? � ! × � p , f Ùf Ò � ? � $ (14)

with × and
Ù

being the magnetic surface area and the volume inside this surface, respectively.

Mono-energetic diffusion coefficient

Another approach to compute an effective ripple is a Monte-Carlo computation of the
� 	 �

neoclassical diffusion coefficients. These computations are often associated with the so called
mono-energetic diffusion coefficient Û E Ü G

. According to the definition of Û E Ü G
given by

Boozer [5], Û q E Ü G
, the average flux is given asÝ Þ ! × � � ! ' 7 f Ç

8 f Ê� � W Ê
67 8 Û q E Ü G L J K

L R � , . � f . ! ' f Ùf R 67 8 Û q E Ü G L J K
L R � , . � f . $ (15)

where
Ü ! à . � 	 p

is the particle energy (see Eq.(14) in Ref. [5]). In analogy to this definition,
one can define the mono-energetic diffusion coefficient in arbitrary coordinates as

� � ! ' 67 8 Û E Ü $ R G L J K
L N

� , . � f . (16)



with the formal radius N defined in (2). Transforming the integration over
; ! à . � 	 E p â G

in (1)
back to the integration over . , we obtain

� � ! ' ) p+ , . �0 1 �3� 4 � � � � �� � 67 8 �D E Ü 	 â G � Ü â � � L J K
L N

� , . � f . O (17)

A comparison with (16) gives for the
� 	 �

regime

Û E Ü $ R G ! ) p+ , . � 1 � � � � �� �� D E Ü 	 â G 4 � $ (18)

where . ! ã p Ü 	 à and 1 ! à ¶ . 	 E = i 8 G
. The pitch angle diffusion coefficient is linked to

� £
from the NRL Formulary according to

� D E Ü 	 â G ! � £ 	 p
.

Peculiarity of Boozer diffusion coefficients

It is well known, that the Hamiltonian of the guiding center motion with constant magnetic mo-
ment shows that the corresponding particle orbits are completely determined by the structure ofi

. Therefore, in Boozer coordinates, the guiding center equations do not contain other metric
elements besides

) Ó
. Evidently, the quantity W R

does not enter these equations. However,
when calculating the particle flux across a magnetic surface, the geometry of this surface must
be taken into account. This leads to the appearance of W R

in the results in Boozer coordinates.
In the work of Boozer, the role of the magnetic surface geometry (function

R
) is eliminated

from the Boozer diffusion coefficient and transferred to the total flux expression (15). From
(15) and (16), taking into account (2) and (14) followsÛ q E Ü G ! Û E Ü $ R G T V W R V Y � O (19)

So, the quantity � � � �� � in (3) corresponds to Û E Ü $ R G
, whereas the quantity n� � � �� � corresponds to

the Boozer diffusion coefficient Û q E Ü G
.

Summary

There exists at least two forms for the presentation of � � � �� � : A form related to a formal radius
of a magnetic surface and a form related to a normalization with respect to the ’classical’
diffusion flux. Both forms give sufficiently close results and so both can be used for a practical
evaluation of the effective ripple. It is also shown here that the Boozer mono-energetic diffusion
coefficient differs by a factor of T V W R V Y �

from the mono-energetic diffusion coefficient related
to the average flux density across the magnetic surface. For calculations in Boozer coordinates,
the effective ripple turns out to depend on the spectra of

i
and W R

.
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