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ANALYSIS OF DETERMINATION OF REYNOLDS STRESS
IN DRIFT WAVE TURBULENCE
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A major challenge in the research towards a fusion power plant is the understanding and
control of the plasma turbulence leading to anomalous transport of particles and energy.
It is observed experimentally and numerically that shear flows in plasmas suppresses tur-
bulence and transport. The generation mechanism of these flows is thus of great interest.
Diamond and Kim [1] presented a first theoretical approach to self-consistent flow gener-
ation in turbulent plasmas by small-scale turbulent fluctuations via the Reynolds stress,
which is defined as Ry = Ry(z) = —(vyv,)y.. = By * (0¢/0y 0¢/0x), ,, where v, and v,
are the z- and y-components (radial and poloidal directions respectively) of the E x B—
velocity and ¢ is the electrostatic potential. Measurements of the Reynolds stress can
thus help to predict flows, e.g. shear flows in plasmas as demonstrated in [2]. However,
the determination of the Reynolds stress requires measurements of the plasma potential,
a task that is difficult in general and nearly impossible in hot plasmas in large devices.
In this work, we investigate the generation and the effect of shear flows in drift wave tur-
bulence and the relation to the Reynolds stress. In particular, we look at an alternative
way of estimating the Reynolds stress via the density fluctuations [3]. We demonstrate the
validity range of this quantity, which we term the pseudo-Reynolds stress. The advantage
of such a quantity is that accurate measurements of density fluctuations are much easier to
obtain. We further present a numerical analysis of the importance of alignment of probes
when the Reynolds stress is to be measured. To clarify the role of the self-generated shear
flow on the evolution of the drift wave fluctuations, we further investigated the influence
of an imposed external shear flow on the development of the drift wave fluctuations.
The model used in the numerical investigations was the 3D drift wave Hasegawa-Wakatani
model [4]. One of the strengths of the model in 3D is that fluctuations and background
variations are evaluated in one instance, i.e. the background and the fluctuations are sepa-
rated, but the interaction between these is included. The back-reaction of the density fluc-
tuations on the background density gradient, however, is not recoverable from Hasegawa-
Wakatani simulations, which use radial periodic geometries (See e.g. [5]). Therefore, in
a slab periodic in y and z (corresponding to the poloidal and toroidal directions, respec-
tively) we use non-permeable walls in the radial direction, i.e. Dirichlet boundaries in z
and fix n and ¢ to zero at x = 0 and x = L,. Thus enabling a back-reaction of the density
fluctuations on the background density gradient.

Using a background density of the form ng = ng(z) = Npe In, the normalised, dimen-
sionless Hasegawa-Wakatani equations are expressed as:
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Note that the parallel resistivity has been included in the normalisation of the parallel
V2em;

eBo

length scale, while the ion gyro-radius at electron temperature, p; = , has been used
to normalise lengths perpendicular to B (z and ).

The simulations were performed by Fourier spectral methods using sine transforms in the
z-direction, since these, intrinsically, are zero at = 0 and = = L, if ky pin = 27/ Ly,
thus matching the radial boundary conditions. The number of modes in the simulations
presented here is 256 in the perpendicular directions (z and y) and 32 in the direction
parallel to the magnetic field. The domain size was L, = L, = 30 and L, = 20 and the
time step dt = 3 - 1073, The viscosity parameter v = 0.1 was necessary to prevent the
accumulation of energy in the short wavelengths.

The energy of the system is defined as £=1 [ [(V.¢)? + n®] dx. In Figure 1 the evolution
of the energy of the background flow and the energy of the the drift waves is shown, and
it is seen that the drift waves are suppressed as the poloidal flow builds up. One may
alternatively say that the drift wave turbulence self-organises into the poloidal shear flow.
To illustrate that the sheared flow also reduces the turbulent transport, the maximum
shearing rate and the turbulent flux is plotted in Figure 2. The flow generation and the
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Figure 1: The temporal evolution Figure 2: The temporal evolution of
of the energy E(ky, = 0,k = 0) the turbulent flux T, = —fng—‘;dx (full
(full line) and the drift wave energy line) and the mazimum shearing rate

E(ky #0) (dashed line). max (%L;) (dashed line).

suppression of turbulence is caused by the back-reaction of the density fluctuations on the
background density, since the fluctuations organise to flatten the background profile and
the effective gradient is flattened. Consequently, the drive of the drift wave turbulence is
quenched. Mathematically, the g—i—term in equation (1) originates from the convection of
the background profile, and the back-reaction of the fluctuations on this is through the
nonlinear convection term, where a g—’;g—‘;—term occurs.

The property of the small-scale plasma turbulence organising into a shear flow can be
explained by the theory of Reynolds stress. The Reynolds stress is a measure of the
anisotropy of the turbulent velocity fluctuations, since it is generated solely from inho-
mogeneous correlations between v, and v,. These produce a stress on the mean flow and
may drive a poloidal shear flow (y-direction). A self-consistent explanation of the flow
generation is that for drift wave turbulence the Reynolds stress can be seen as a density
flux of polarisation due to the nonlinear polarisation drift [6]. This creates a radial electric

field which combined with the toroidal magnetic field generates the poloidal flow.
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The Reynolds stress is interesting to measure experimentally, since large flows may be
predicted [2]. This has an interest, since poloidal flows may be responsible for the L—
to H-mode transition. Several effects besides self-organisation of turbulence may cause a
poloidal flow such as neoclassical effects, particle trapping etc. These effects also influence
the turbulence, thus the Reynolds stress may also carry a signature of those. By averaging
the Hasegawa-Wakatani equation for the vorticity (2) over y and z we obtain
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The Reynolds stress (in normalized units) is defined as Ry = —(vyv,) = (0¢/0y 0¢/0x),
and now the first term on the right hand side of (3) is identified as the divergence of the
Reynolds stress generating the poloidal flow. Numerical simulations were performed and
radial profiles of the quantities on the left and right hand side of (3) were calculated.
These showed perfect correspondence as expected from (3).

Experimental determination of the Reynolds stress, however, demands an accurate mea-
surement of the fluctuations in the electrostatic potential. This, unfortunately, is quite
difficult, especially in large plasma devices [2,7]. It has therefore been suggested that
an approximate value of the Reynolds stress may be obtained from the density perturba-
tions, since ¢ and n are strongly correlated in the drift wave limit, i.e. for & # 0. This
density-based pseudo-Reynolds stress is defined as R, = (On/dy 0On/0z). If R, and Ry
are correlated it will be sufficient to measure the density fluctuations in order to get an
approximate value for the shear flow generation.

We performed numerical simulations to determine whether a density-based pseudo-Rey-
nolds stress is correlated to the real Reynolds stress. In the edge of experimental plasmas
confined by a sheared magnetic field, no modes having & = 0 exist. Hence it is reasonable
to exclude the convective cell in the Reynolds stress calculations and only use the drift
wave components of n, i.e. n(k # 0), in the calculation of R,,. From the resulting profiles
(to be presented in [8]) it is seen that the pseudo-Reynolds stress gives a good qualitative
hint on the flow generation - at least for times before the turbulence is fully developed.
The degradation of the correspondence between the pseudo-Reynolds stress and the flow
velocity can in part be explained by the fact that density fluctuations cascade to smaller
scales [9], which causes problems in properly resolving the gradient of the density field
numerically. This leads to the error in 0, growing and since the pseudo-Reynolds stress
is the divergence of a product of two derivatives the error due to resolution becomes sig-
nificant.

The effect of a misaligned probe array, when determining the Reynolds stress in an ex-
periment has been studied. We imagine an array of five probes as illustrated in figure 3,
with fixed distances (r) and fixed (right) angles between the probes. This is the minimal
array with which to obtain the divergence of the Reynolds stress from two independent
measurements of the Reynolds stress:
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Figure 3: The probe array with five 08
probes. The non-filled circles are the 0 5 0 5 20
probe array after the array is rotated by a (O)

the angle .

Figure 4: Rotated probe calculations at time t = 176 with the misalignment in the plane
perpendicular to the magnetic field lines. Upper graph shows the difference of the “mea-
sured” divergence of the Reynolds stress and the value for perfect alignment relative to the
latter as a function of the misalignment angle oc. The lower graph shows the change of
the two Reynolds stresses.

From Figure 4 it is seen that the calculated divergence of the Reynolds stress only changes
by less than 30% if the misalignment in the plane perpendicular to the magnetic field is
less than 5°. The flexibility in the alignment in the plane parallel to the magnetic field is
similar. Thus alignment of the probe array is important, but it is not crucial to have a
perfect alignment to obtain a reasonably good estimate of the divergence of the Reynolds
stress and the acceleration of the mean shear flow.

The validity of the results presented above are naturally limited by the assumptions of
the relatively simple Hasegawa-Wakatani model. Furthermore, the approximation of the
pseudo-Reynolds stress is a rough method. However, these first-principles results indicate
that the concept of performing accurate measurements of density fluctuations in order to
predict the generation of shear flows may prove interesting.

References

[1] P. H. Diamond and Y.-B. Kim, Phys. Fluids B 3 (1991) 1626-1633.

[2] C. Hidalgo, C. Silva, M. A. Pedrosa et al., Phys. Rev. Lett. 83 (1999) 2203-2205.

[3] P. H. Diamond, M. N. Rosenbluth et al., Phys. Rev. Lett. 84 (2000) 4842-4845.

[4] A. Hasegawa and M. Wakatani, Phys. Rev. Lett. 50 (1983) 682-686.

[5] S. B. Korsholm, P. K. Michelsen, and V. Naulin, Phys. Plasmas 6 (1999) 2401-2408.

[6] V. Naulin, Europhys. Lett. 43 (1998) 533 — 538.

[7] B. LeBlanc, R. Bell, S. Bernabei et al., Phys. Rev. Lett. 82(2) (1999) 331-334.

[8] S. B. Korsholm, P. K. Michelsen, V. Naulin et al., (2001?7), submitted to Plasma
Phys. Control. Fusion.

[9] D. Biskamp and A. Zeiler, Phys. Rev. Lett. 74 (1995) 706-709.

2136



